Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Mar;8(3):573–586. doi: 10.1110/ps.8.3.573

Analysis of interactive packing of secondary structural elements in alpha/beta units in proteins.

B V Reddy 1, H A Nagarajaram 1, T L Blundell 1
PMCID: PMC2144285  PMID: 10091660

Abstract

An alpha-helix and a beta-strand are said to be interactively packed if at least one residue in each of the secondary structural elements loses 10% of its solvent accessible contact area on association with the other secondary structural element. An analysis of all such 5,975 nonidentical alpha/beta units in protein structures, defined at < or = 2.5 A resolution, shows that the interaxial distance between the alpha-helix and the beta-strand is linearly correlated with the residue-dependent function, log[(V/nda)/n-int], where V is the volume of amino acid residues in the packing interface, nda is the normalized difference in solvent accessible contact area of the residues in packed and unpacked secondary structural elements, and n-int is the number of residues in the packing interface. The beta-sheet unit (beta u), defined as a pair of adjacent parallel or antiparallel hydrogen-bonded beta-strands, packing with an alpha-helix shows a better correlation between the interaxial distance and log(V/nda) for the residues in the packing interface. This packing relationship is shown to be useful in the prediction of interaxial distances in alpha/beta units using the interacting residue information of equivalent alpha/beta units of homologous proteins. It is, therefore, of value in comparative modeling of protein structures.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajaj M., Blundell T. Evolution and the tertiary structure of proteins. Annu Rev Biophys Bioeng. 1984;13:453–492. doi: 10.1146/annurev.bb.13.060184.002321. [DOI] [PubMed] [Google Scholar]
  2. Bajorath J., Stenkamp R., Aruffo A. Knowledge-based model building of proteins: concepts and examples. Protein Sci. 1993 Nov;2(11):1798–1810. doi: 10.1002/pro.5560021103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. doi: 10.1016/0079-6107(84)90007-5. [DOI] [PubMed] [Google Scholar]
  4. Barlow D. J., Thornton J. M. Helix geometry in proteins. J Mol Biol. 1988 Jun 5;201(3):601–619. doi: 10.1016/0022-2836(88)90641-9. [DOI] [PubMed] [Google Scholar]
  5. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  6. Blundell T. L., Sibanda B. L., Sternberg M. J., Thornton J. M. Knowledge-based prediction of protein structures and the design of novel molecules. 1987 Mar 26-Apr 1Nature. 326(6111):347–352. doi: 10.1038/326347a0. [DOI] [PubMed] [Google Scholar]
  7. Blundell T., Barlow D., Borkakoti N., Thornton J. Solvent-induced distortions and the curvature of alpha-helices. Nature. 1983 Nov 17;306(5940):281–283. doi: 10.1038/306281a0. [DOI] [PubMed] [Google Scholar]
  8. Blundell T., Carney D., Gardner S., Hayes F., Howlin B., Hubbard T., Overington J., Singh D. A., Sibanda B. L., Sutcliffe M. 18th Sir Hans Krebs lecture. Knowledge-based protein modelling and design. Eur J Biochem. 1988 Mar 15;172(3):513–520. doi: 10.1111/j.1432-1033.1988.tb13917.x. [DOI] [PubMed] [Google Scholar]
  9. Boutonnet N. S., Kajava A. V., Rooman M. J. Structural classification of alphabetabeta and betabetaalpha supersecondary structure units in proteins. Proteins. 1998 Feb 1;30(2):193–212. [PubMed] [Google Scholar]
  10. Browne W. J., North A. C., Phillips D. C., Brew K., Vanaman T. C., Hill R. L. A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen's egg-white lysozyme. J Mol Biol. 1969 May 28;42(1):65–86. doi: 10.1016/0022-2836(69)90487-2. [DOI] [PubMed] [Google Scholar]
  11. Chothia C. Hydrophobic bonding and accessible surface area in proteins. Nature. 1974 Mar 22;248(446):338–339. doi: 10.1038/248338a0. [DOI] [PubMed] [Google Scholar]
  12. Chothia C., Lesk A. M., Levitt M., Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J. The predicted structure of immunoglobulin D1.3 and its comparison with the crystal structure. Science. 1986 Aug 15;233(4765):755–758. doi: 10.1126/science.3090684. [DOI] [PubMed] [Google Scholar]
  13. Chothia C., Lesk A. M. The evolution of protein structures. Cold Spring Harb Symp Quant Biol. 1987;52:399–405. doi: 10.1101/sqb.1987.052.01.046. [DOI] [PubMed] [Google Scholar]
  14. Chothia C., Lesk A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986 Apr;5(4):823–826. doi: 10.1002/j.1460-2075.1986.tb04288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chothia C., Levitt M., Richardson D. Structure of proteins: packing of alpha-helices and pleated sheets. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4130–4134. doi: 10.1073/pnas.74.10.4130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chothia C. Principles that determine the structure of proteins. Annu Rev Biochem. 1984;53:537–572. doi: 10.1146/annurev.bi.53.070184.002541. [DOI] [PubMed] [Google Scholar]
  17. Chou K. C., Némethy G., Rumsey S., Tuttle R. W., Scheraga H. A. Interactions between an alpha-helix and a beta-sheet. Energetics of alpha/beta packing in proteins. J Mol Biol. 1985 Dec 5;186(3):591–609. doi: 10.1016/0022-2836(85)90133-0. [DOI] [PubMed] [Google Scholar]
  18. Cohen F. E., Sternberg M. J., Taylor W. R. Analysis and prediction of the packing of alpha-helices against a beta-sheet in the tertiary structure of globular proteins. J Mol Biol. 1982 Apr 25;156(4):821–862. doi: 10.1016/0022-2836(82)90144-9. [DOI] [PubMed] [Google Scholar]
  19. Efimov A. V. Structural similarity between two-layer alpha/beta and beta-proteins. J Mol Biol. 1995 Jan 27;245(4):402–415. doi: 10.1006/jmbi.1994.0033. [DOI] [PubMed] [Google Scholar]
  20. Farber G. K., Petsko G. A. The evolution of alpha/beta barrel enzymes. Trends Biochem Sci. 1990 Jun;15(6):228–234. doi: 10.1016/0968-0004(90)90035-a. [DOI] [PubMed] [Google Scholar]
  21. Greer J. Comparative model-building of the mammalian serine proteases. J Mol Biol. 1981 Dec 25;153(4):1027–1042. doi: 10.1016/0022-2836(81)90465-4. [DOI] [PubMed] [Google Scholar]
  22. Handel T. De novo design of an alpha/beta barrel protein. Protein Eng. 1990 Mar;3(4):233–234. doi: 10.1093/protein/3.4.233. [DOI] [PubMed] [Google Scholar]
  23. Havel T. F., Snow M. E. A new method for building protein conformations from sequence alignments with homologues of known structure. J Mol Biol. 1991 Jan 5;217(1):1–7. doi: 10.1016/0022-2836(91)90603-4. [DOI] [PubMed] [Google Scholar]
  24. Hilbert M., Böhm G., Jaenicke R. Structural relationships of homologous proteins as a fundamental principle in homology modeling. Proteins. 1993 Oct;17(2):138–151. doi: 10.1002/prot.340170204. [DOI] [PubMed] [Google Scholar]
  25. Janin J., Chothia C. Packing of alpha-helices onto beta-pleated sheets and the anatomy of alpha/beta proteins. J Mol Biol. 1980 Oct 15;143(1):95–128. doi: 10.1016/0022-2836(80)90126-6. [DOI] [PubMed] [Google Scholar]
  26. Johnson M. S., Srinivasan N., Sowdhamini R., Blundell T. L. Knowledge-based protein modeling. Crit Rev Biochem Mol Biol. 1994;29(1):1–68. doi: 10.3109/10409239409086797. [DOI] [PubMed] [Google Scholar]
  27. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  28. Lasters I., Wodak S. J., Pio F. The design of idealized alpha/beta-barrels: analysis of beta-sheet closure requirements. Proteins. 1990;7(3):249–256. doi: 10.1002/prot.340070306. [DOI] [PubMed] [Google Scholar]
  29. Lesk A. M., Brändén C. I., Chothia C. Structural principles of alpha/beta barrel proteins: the packing of the interior of the sheet. Proteins. 1989;5(2):139–148. doi: 10.1002/prot.340050208. [DOI] [PubMed] [Google Scholar]
  30. Lesk A. M., Chothia C. Evolution of proteins formed by beta-sheets. II. The core of the immunoglobulin domains. J Mol Biol. 1982 Sep 15;160(2):325–342. doi: 10.1016/0022-2836(82)90179-6. [DOI] [PubMed] [Google Scholar]
  31. Lesk A. M., Chothia C. Evolution of proteins formed by beta-sheets. II. The core of the immunoglobulin domains. J Mol Biol. 1982 Sep 15;160(2):325–342. doi: 10.1016/0022-2836(82)90179-6. [DOI] [PubMed] [Google Scholar]
  32. Lesk A. M., Chothia C. How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J Mol Biol. 1980 Jan 25;136(3):225–270. doi: 10.1016/0022-2836(80)90373-3. [DOI] [PubMed] [Google Scholar]
  33. Levitt M., Chothia C. Structural patterns in globular proteins. Nature. 1976 Jun 17;261(5561):552–558. doi: 10.1038/261552a0. [DOI] [PubMed] [Google Scholar]
  34. Martin A. C., MacArthur M. W., Thornton J. M. Assessment of comparative modeling in CASP2. Proteins. 1997;Suppl 1:14–28. doi: 10.1002/(sici)1097-0134(1997)1+<14::aid-prot4>3.3.co;2-f. [DOI] [PubMed] [Google Scholar]
  35. Mosimann S., Meleshko R., James M. N. A critical assessment of comparative molecular modeling of tertiary structures of proteins. Proteins. 1995 Nov;23(3):301–317. doi: 10.1002/prot.340230305. [DOI] [PubMed] [Google Scholar]
  36. Mumenthaler C., Braun W. Predicting the helix packing of globular proteins by self-correcting distance geometry. Protein Sci. 1995 May;4(5):863–871. doi: 10.1002/pro.5560040506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Raine A. R., Scrutton N. S., Mathews F. S. On the evolution of alternate core packing in eightfold beta/alpha-barrels. Protein Sci. 1994 Oct;3(10):1889–1892. doi: 10.1002/pro.5560031028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Reddy B. V., Blundell T. L. Packing of secondary structural elements in proteins. Analysis and prediction of inter-helix distances. J Mol Biol. 1993 Oct 5;233(3):464–479. doi: 10.1006/jmbi.1993.1524. [DOI] [PubMed] [Google Scholar]
  39. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  40. Richmond T. J., Richards F. M. Packing of alpha-helices: geometrical constraints and contact areas. J Mol Biol. 1978 Mar 15;119(4):537–555. doi: 10.1016/0022-2836(78)90201-2. [DOI] [PubMed] [Google Scholar]
  41. Rost B., Sander C. Bridging the protein sequence-structure gap by structure predictions. Annu Rev Biophys Biomol Struct. 1996;25:113–136. doi: 10.1146/annurev.bb.25.060196.000553. [DOI] [PubMed] [Google Scholar]
  42. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  43. Sali A., Blundell T. L. Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming. J Mol Biol. 1990 Mar 20;212(2):403–428. doi: 10.1016/0022-2836(90)90134-8. [DOI] [PubMed] [Google Scholar]
  44. Sali A. Modeling mutations and homologous proteins. Curr Opin Biotechnol. 1995 Aug;6(4):437–451. doi: 10.1016/0958-1669(95)80074-3. [DOI] [PubMed] [Google Scholar]
  45. Sali A., Potterton L., Yuan F., van Vlijmen H., Karplus M. Evaluation of comparative protein modeling by MODELLER. Proteins. 1995 Nov;23(3):318–326. doi: 10.1002/prot.340230306. [DOI] [PubMed] [Google Scholar]
  46. Srinivasan N., Blundell T. L. An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Eng. 1993 Jul;6(5):501–512. doi: 10.1093/protein/6.5.501. [DOI] [PubMed] [Google Scholar]
  47. Srinivasan S., March C. J., Sudarsanam S. An automated method for modeling proteins on known templates using distance geometry. Protein Sci. 1993 Feb;2(2):277–289. doi: 10.1002/pro.5560020216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sutcliffe M. J., Haneef I., Carney D., Blundell T. L. Knowledge based modelling of homologous proteins, Part I: Three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng. 1987 Oct-Nov;1(5):377–384. doi: 10.1093/protein/1.5.377. [DOI] [PubMed] [Google Scholar]
  49. Sutcliffe M. J., Hayes F. R., Blundell T. L. Knowledge based modelling of homologous proteins, Part II: Rules for the conformations of substituted sidechains. Protein Eng. 1987 Oct-Nov;1(5):385–392. doi: 10.1093/protein/1.5.385. [DOI] [PubMed] [Google Scholar]
  50. Sánchez R., Sali A. Advances in comparative protein-structure modelling. Curr Opin Struct Biol. 1997 Apr;7(2):206–214. doi: 10.1016/s0959-440x(97)80027-9. [DOI] [PubMed] [Google Scholar]
  51. Vtyurin N., Panov V. Packing constraints of hydrophobic side chains in (alpha/beta)8 barrels. Proteins. 1995 Mar;21(3):256–260. doi: 10.1002/prot.340210308. [DOI] [PubMed] [Google Scholar]
  52. Walther D., Eisenhaber F., Argos P. Principles of helix-helix packing in proteins: the helical lattice superposition model. J Mol Biol. 1996 Jan 26;255(3):536–553. doi: 10.1006/jmbi.1996.0044. [DOI] [PubMed] [Google Scholar]
  53. Yoshizato K., Frieden E. Increase in binding capacity for triiodothyronine in tadpole tail nuclei during metamorphosis. Nature. 1975 Apr 24;254(5502):705–707. doi: 10.1038/254705a0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES