Abstract
To explore the structure of the pore-forming fragment of colicin E1 in membranes, a series of 23 consecutive single cysteine substitution mutants was prepared in the sequence 402-424. Each mutant was reacted with a sulfhydryl-specific reagent to generate a nitroxide labeled side chain, and the mobility of the side chain and its accessibility to collision with paramagnetic reagents was determined from the electron paramagnetic resonance spectrum. Individual values of these quantities were used to identify tertiary contact sites and the nature of the surrounding solvent, while their periodic dependence on sequence position was used to identify secondary structure. In solution, the data revealed a regular helix of 11 residues in the region 406-416, consistent with helix IV of the crystal structure. Upon binding to negatively charged membranes at pH 4.0, helix IV apparently grows to a length of 19 residues, extending from 402-420. One face of the helix is solvated by the lipid bilayer, and the other by an environment of a polar nature. Surprisingly, a conserved charged pair, D408-R409, is located on the lipid-exposed face. Evidence is presented to suggest a transmembrane orientation of this new helix, although other topographies may exist in equilibrium.
Full Text
The Full Text of this article is available as a PDF (986.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alber T., Sun D. P., Nye J. A., Muchmore D. C., Matthews B. W. Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein. Biochemistry. 1987 Jun 30;26(13):3754–3758. doi: 10.1021/bi00387a002. [DOI] [PubMed] [Google Scholar]
- Altenbach C., Flitsch S. L., Khorana H. G., Hubbell W. L. Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry. 1989 Sep 19;28(19):7806–7812. doi: 10.1021/bi00445a042. [DOI] [PubMed] [Google Scholar]
- Altenbach C., Greenhalgh D. A., Khorana H. G., Hubbell W. L. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1667–1671. doi: 10.1073/pnas.91.5.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altenbach C., Marti T., Khorana H. G., Hubbell W. L. Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science. 1990 Jun 1;248(4959):1088–1092. doi: 10.1126/science.2160734. [DOI] [PubMed] [Google Scholar]
- Bowie J. U., Lüthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991 Jul 12;253(5016):164–170. doi: 10.1126/science.1853201. [DOI] [PubMed] [Google Scholar]
- Collarini M., Amblard G., Lazdunski C., Pattus F. Gating processes of channels induced by colicin A, its C-terminal fragment and colicin E1 in planar lipid bilayers. Eur Biophys J. 1987;14(3):147–153. doi: 10.1007/BF00253839. [DOI] [PubMed] [Google Scholar]
- Cramer W. A., Heymann J. B., Schendel S. L., Deriy B. N., Cohen F. S., Elkins P. A., Stauffacher C. V. Structure-function of the channel-forming colicins. Annu Rev Biophys Biomol Struct. 1995;24:611–641. doi: 10.1146/annurev.bb.24.060195.003143. [DOI] [PubMed] [Google Scholar]
- Dalton L. A., McIntyre J. O., Fleischer S. Distance estimate of the active center of D-beta-hydroxybutyrate dehydrogenase from the membrane surface. Biochemistry. 1987 Apr 21;26(8):2117–2130. doi: 10.1021/bi00382a009. [DOI] [PubMed] [Google Scholar]
- Dankert J. R., Uratani Y., Grabau C., Cramer W. A., Hermodson M. On a domain structure of colicin E1. A COOH-terminal peptide fragment active in membrane depolarization. J Biol Chem. 1982 Apr 10;257(7):3857–3863. [PubMed] [Google Scholar]
- Eisenberg D., Weiss R. M., Terwilliger T. C. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci U S A. 1984 Jan;81(1):140–144. doi: 10.1073/pnas.81.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elkins P., Bunker A., Cramer W. A., Stauffacher C. V. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Structure. 1997 Mar 15;5(3):443–458. doi: 10.1016/s0969-2126(97)00200-1. [DOI] [PubMed] [Google Scholar]
- Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
- Farahbakhsh Z. T., Altenbach C., Hubbell W. L. Spin labeled cysteines as sensors for protein-lipid interaction and conformation in rhodopsin. Photochem Photobiol. 1992 Dec;56(6):1019–1033. doi: 10.1111/j.1751-1097.1992.tb09725.x. [DOI] [PubMed] [Google Scholar]
- Géli V., Koorengevel M. C., Demel R. A., Lazdunski C., Killian J. A. Acidic interaction of the colicin A pore-forming domain with model membranes of Escherichia coli lipids results in a large perturbation of acyl chain order and stabilization of the bilayer. Biochemistry. 1992 Nov 17;31(45):11089–11094. doi: 10.1021/bi00160a019. [DOI] [PubMed] [Google Scholar]
- Honig B. H., Hubbell W. L., Flewelling R. F. Electrostatic interactions in membranes and proteins. Annu Rev Biophys Biophys Chem. 1986;15:163–193. doi: 10.1146/annurev.bb.15.060186.001115. [DOI] [PubMed] [Google Scholar]
- Hubbell W. L., Gross A., Langen R., Lietzow M. A. Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol. 1998 Oct;8(5):649–656. doi: 10.1016/s0959-440x(98)80158-9. [DOI] [PubMed] [Google Scholar]
- Hubbell W. L., Mchaourab H. S., Altenbach C., Lietzow M. A. Watching proteins move using site-directed spin labeling. Structure. 1996 Jul 15;4(7):779–783. doi: 10.1016/s0969-2126(96)00085-8. [DOI] [PubMed] [Google Scholar]
- Jähnig F. Thermodynamics and kinetics of protein incorporation into membranes. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3691–3695. doi: 10.1073/pnas.80.12.3691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kienker P. K., Qiu X., Slatin S. L., Finkelstein A., Jakes K. S. Transmembrane insertion of the colicin Ia hydrophobic hairpin. J Membr Biol. 1997 May 1;157(1):27–37. doi: 10.1007/s002329900213. [DOI] [PubMed] [Google Scholar]
- Kim Y., Valentine K., Opella S. J., Schendel S. L., Cramer W. A. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. Protein Sci. 1998 Feb;7(2):342–348. doi: 10.1002/pro.5560070214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klug C. S., Su W., Feix J. B. Mapping of the residues involved in a proposed beta-strand located in the ferric enterobactin receptor FepA using site-directed spin-labeling. Biochemistry. 1997 Oct 21;36(42):13027–13033. doi: 10.1021/bi971232m. [DOI] [PubMed] [Google Scholar]
- Koteiche H. A., Berengian A. R., Mchaourab H. S. Identification of protein folding patterns using site-directed spin labeling. Structural characterization of a beta-sheet and putative substrate binding regions in the conserved domain of alpha A-crystallin. Biochemistry. 1998 Sep 15;37(37):12681–12688. doi: 10.1021/bi9814078. [DOI] [PubMed] [Google Scholar]
- Lambotte S., Jasperse P., Bechinger B. Orientational distribution of alpha-helices in the colicin B and E1 channel domains: a one and two dimensional 15N solid-state NMR investigation in uniaxially aligned phospholipid bilayers. Biochemistry. 1998 Jan 6;37(1):16–22. doi: 10.1021/bi9724671. [DOI] [PubMed] [Google Scholar]
- Mchaourab H. S., Lietzow M. A., Hideg K., Hubbell W. L. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry. 1996 Jun 18;35(24):7692–7704. doi: 10.1021/bi960482k. [DOI] [PubMed] [Google Scholar]
- Mel S. F., Falick A. M., Burlingame A. L., Stroud R. M. Mapping a membrane-associated conformation of colicin Ia. Biochemistry. 1993 Sep 14;32(36):9473–9479. doi: 10.1021/bi00087a027. [DOI] [PubMed] [Google Scholar]
- Merrill A. R., Cramer W. A. Identification of a voltage-responsive segment of the potential-gated colicin E1 ion channel. Biochemistry. 1990 Sep 18;29(37):8529–8534. doi: 10.1021/bi00489a004. [DOI] [PubMed] [Google Scholar]
- Oh K. J., Zhan H., Cui C., Hideg K., Collier R. J., Hubbell W. L. Organization of diphtheria toxin T domain in bilayers: a site-directed spin labeling study. Science. 1996 Aug 9;273(5276):810–812. doi: 10.1126/science.273.5276.810. [DOI] [PubMed] [Google Scholar]
- Parker M. W., Postma J. P., Pattus F., Tucker A. D., Tsernoglou D. Refined structure of the pore-forming domain of colicin A at 2.4 A resolution. J Mol Biol. 1992 Apr 5;224(3):639–657. doi: 10.1016/0022-2836(92)90550-4. [DOI] [PubMed] [Google Scholar]
- Perozo E., Cortes D. M., Cuello L. G. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol. 1998 Jun;5(6):459–469. doi: 10.1038/nsb0698-459. [DOI] [PubMed] [Google Scholar]
- Qiu X. Q., Jakes K. S., Kienker P. K., Finkelstein A., Slatin S. L. Major transmembrane movement associated with colicin Ia channel gating. J Gen Physiol. 1996 Mar;107(3):313–328. doi: 10.1085/jgp.107.3.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slatin S. L., Qiu X. Q., Jakes K. S., Finkelstein A. Identification of a translocated protein segment in a voltage-dependent channel. Nature. 1994 Sep 8;371(6493):158–161. doi: 10.1038/371158a0. [DOI] [PubMed] [Google Scholar]
- Song H. Y., Cohen F. S., Cramer W. A. Membrane topography of ColE1 gene products: the hydrophobic anchor of the colicin E1 channel is a helical hairpin. J Bacteriol. 1991 May;173(9):2927–2934. doi: 10.1128/jb.173.9.2927-2934.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stroud R. Ion channel forming colicins. Curr Opin Struct Biol. 1995 Aug;5(4):514–520. doi: 10.1016/0959-440x(95)80037-9. [DOI] [PubMed] [Google Scholar]
- Todd A. P., Cong J., Levinthal F., Levinthal C., Hubbell W. L. Site-directed mutagenesis of colicin E1 provides specific attachment sites for spin labels whose spectra are sensitive to local conformation. Proteins. 1989;6(3):294–305. doi: 10.1002/prot.340060312. [DOI] [PubMed] [Google Scholar]
- Vetter I. R., Parker M. W., Tucker A. D., Lakey J. H., Pattus F., Tsernoglou D. Crystal structure of a colicin N fragment suggests a model for toxicity. Structure. 1998 Jul 15;6(7):863–874. doi: 10.1016/s0969-2126(98)00088-4. [DOI] [PubMed] [Google Scholar]
- Voss J., Hubbell W. L., Hernandez-Borrell J., Kaback H. R. Site-directed spin-labeling of transmembrane domain VII and the 4B1 antibody epitope in the lactose permease of Escherichia coli. Biochemistry. 1997 Dec 9;36(49):15055–15061. doi: 10.1021/bi971726j. [DOI] [PubMed] [Google Scholar]
- Wiener M., Freymann D., Ghosh P., Stroud R. M. Crystal structure of colicin Ia. Nature. 1997 Jan 30;385(6615):461–464. doi: 10.1038/385461a0. [DOI] [PubMed] [Google Scholar]
- Xu S., Cramer W. A., Peterson A. A., Hermodson M., Montecucco C. Dynamic properties of membrane proteins: reversible insertion into membrane vesicles of a colicin E1 channel-forming peptide. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7531–7535. doi: 10.1073/pnas.85.20.7531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zakharov S. D., Lindeberg M., Griko Y., Salamon Z., Tollin G., Prendergast F. G., Cramer W. A. Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4282–4287. doi: 10.1073/pnas.95.8.4282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y. L., Cramer W. A. Constraints imposed by protease accessibility on the trans-membrane and surface topography of the colicin E1 ion channel. Protein Sci. 1992 Dec;1(12):1666–1676. doi: 10.1002/pro.5560011215. [DOI] [PMC free article] [PubMed] [Google Scholar]