Abstract
Periodate oxidized CTP (oCTP) was used to investigate the importance of lysine residues in the CTP binding site of the cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-NeuAc) synthetase (EC 2.7.7.43) from Haemophilus ducreyi. The reaction of oCTP with the enzyme follows pseudo-first-order saturation kinetics, giving a maximum rate of inactivation of 0.6 min(-1) and a K(I) of 6.0 mM at pH 7.1. Mass spectrometric analysis of the modified enzyme provided data that was consistent with beta-elimination of triphosphate after the reaction of oCTP with the enzyme. A fully reduced enzyme-oCTP conjugate, retaining the triphosphate moiety, was obtained by inclusion of NaBH3CN in the reaction solution. The beta-elimination product of oCTP reacted several times more rapidly with the enzyme compared to equivalent concentrations of oCTP. This compound also formed a stable reduced morpholino adduct with CMP-NeuAc synthetase when the reaction was conducted in the presence of NaBH3CN, and was found to be a useful lysine modifying reagent. The substrate CTP was capable of protecting the enzyme to a large degree from inactivation by oCTP and its beta-elimination product. Lys19, a residue conserved in CMP-NeuAc synthetases, was identified as being labeled with the beta-elimination product of oCTP.
Full Text
The Full Text of this article is available as a PDF (312.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrio J. R., Secrist J. A., 3rd, Leonard N. J. Fluorescent adenosine and cytidine derivatives. Biochem Biophys Res Commun. 1972 Jan 31;46(2):597–604. doi: 10.1016/s0006-291x(72)80181-5. [DOI] [PubMed] [Google Scholar]
- Borders C. L., Jr, Riordan J. F. An essential arginyl residue at the nucleotide binding site of creatine kinase. Biochemistry. 1975 Oct 21;14(21):4699–4704. doi: 10.1021/bi00692a021. [DOI] [PubMed] [Google Scholar]
- Campagnari A. A., Spinola S. M., Lesse A. J., Kwaik Y. A., Mandrell R. E., Apicella M. A. Lipooligosaccharide epitopes shared among gram-negative non-enteric mucosal pathogens. Microb Pathog. 1990 May;8(5):353–362. doi: 10.1016/0882-4010(90)90094-7. [DOI] [PubMed] [Google Scholar]
- Campagnari A. A., Wild L. M., Griffiths G. E., Karalus R. J., Wirth M. A., Spinola S. M. Role of lipooligosaccharides in experimental dermal lesions caused by Haemophilus ducreyi. Infect Immun. 1991 Aug;59(8):2601–2608. doi: 10.1128/iai.59.8.2601-2608.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang G. G., Shiao M. S., Lee K. R., Wu J. J. Modification of human placental alkaline phosphatase by periodate-oxidized 1,N6-ethenoadenosine monophosphate. Biochem J. 1990 Dec 15;272(3):683–690. doi: 10.1042/bj2720683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grant A. J., Lerner L. M. Heat-induced formation of alpha,beta-unsaturated nucleoside dialdehydes and their activity with adenosine deaminase. J Med Chem. 1980 Jul;23(7):795–798. doi: 10.1021/jm00181a017. [DOI] [PubMed] [Google Scholar]
- Gregory M. R., Kaiser E. T. Inactivation of phosphofructokinase by dialdehyde-ATP. Arch Biochem Biophys. 1979 Aug;196(1):199–208. doi: 10.1016/0003-9861(79)90567-8. [DOI] [PubMed] [Google Scholar]
- Jelakovic S., Jann K., Schulz G. E. The three-dimensional structure of capsule-specific CMP: 2-keto-3-deoxy-manno-octonic acid synthetase from Escherichia coli. FEBS Lett. 1996 Aug 5;391(1-2):157–161. doi: 10.1016/0014-5793(96)00724-7. [DOI] [PubMed] [Google Scholar]
- KHYM J. X. The reaction of methylamine with periodate-oxidized adenosine 5'-phosphate. Biochemistry. 1963 Mar-Apr;2:344–350. doi: 10.1021/bi00902a029. [DOI] [PubMed] [Google Scholar]
- Kaufmann R., Spengler B., Lützenkirchen F. Mass spectrometric sequencing of linear peptides by product-ion analysis in a reflectron time-of-flight mass spectrometer using matrix-assisted laser desorption ionization. Rapid Commun Mass Spectrom. 1993 Oct;7(10):902–910. doi: 10.1002/rcm.1290071010. [DOI] [PubMed] [Google Scholar]
- Kean E. L. Sialic acid activation. Glycobiology. 1991 Nov;1(5):441–447. doi: 10.1093/glycob/1.5.441. [DOI] [PubMed] [Google Scholar]
- Kelm S., Schauer R., Crocker P. R. The Sialoadhesins--a family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily. Glycoconj J. 1996 Dec;13(6):913–926. doi: 10.1007/BF01053186. [DOI] [PubMed] [Google Scholar]
- King M. M., Carlson G. M. Interaction of phosphorylase kinase with the 2',3'-dialdehyde derivative of adenosine triphosphate. 1. Kinetics of inactivation. Biochemistry. 1981 Jul 21;20(15):4382–4387. doi: 10.1021/bi00518a023. [DOI] [PubMed] [Google Scholar]
- King M. M., Colman R. F. Affinity labeling of nicotinamide adenine dinucleotide dependent isocitrate dehydrogenase by the 2',3'-dialdehyde derivative of adenosine 5'-diphosphate. Evidence for the formation of an unusual reaction product. Biochemistry. 1983 Mar 29;22(7):1656–1665. doi: 10.1021/bi00276a021. [DOI] [PubMed] [Google Scholar]
- Lagergård T. The role of Haemophilus ducreyi bacteria, cytotoxin, endotoxin and antibodies in animal models for study of chancroid. Microb Pathog. 1992 Sep;13(3):203–217. doi: 10.1016/0882-4010(92)90021-f. [DOI] [PubMed] [Google Scholar]
- Lin C. C., Chang G. G. Using periodate-oxidized nucleotide as affinity label for the nucleotide site of proteins. J Protein Chem. 1993 Oct;12(5):627–632. doi: 10.1007/BF01025127. [DOI] [PubMed] [Google Scholar]
- Lowe P. N., Beechey R. B. Interactions between the mitochondrial adenosinetriphosphatase and periodate-oxidized adenosine 5'-triphosphate, an affinity label for adenosine 5'-triphosphate binding sites. Biochemistry. 1982 Aug 17;21(17):4073–4082. doi: 10.1021/bi00260a025. [DOI] [PubMed] [Google Scholar]
- Mandrell R. E., Apicella M. A. Lipo-oligosaccharides (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS. Immunobiology. 1993 Apr;187(3-5):382–402. doi: 10.1016/S0171-2985(11)80352-9. [DOI] [PubMed] [Google Scholar]
- Mas M. T., Colman R. F. Modification of TPN-dependent isocitrate dehydrogenase by the 2', 3'-dialdehyde derivatives of TPNH and TPN. J Biol Chem. 1983 Aug 10;258(15):9332–9338. [PubMed] [Google Scholar]
- Melaugh W., Campagnari A. A., Gibson B. W. The lipooligosaccharides of Haemophilus ducreyi are highly sialylated. J Bacteriol. 1996 Jan;178(2):564–570. doi: 10.1128/jb.178.2.564-570.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Odumeru J. A., Wiseman G. M., Ronald A. R. Relationship between lipopolysaccharide composition and virulence of Haemophilus ducreyi. J Med Microbiol. 1987 Mar;23(2):155–162. doi: 10.1099/00222615-23-2-155. [DOI] [PubMed] [Google Scholar]
- Parsons N. J., Patel P. V., Tan E. L., Andrade J. R., Nairn C. A., Goldner M., Cole J. A., Smith H. Cytidine 5'-monophospho-N-acetyl neuraminic acid and a low molecular weight factor from human blood cells induce lipopolysaccharide alteration in gonococci when conferring resistance to killing by human serum. Microb Pathog. 1988 Oct;5(4):303–309. doi: 10.1016/0882-4010(88)90103-9. [DOI] [PubMed] [Google Scholar]
- Patthy L., Thész J. Origin of the selectivity of alpha-dicarbonyl reagents for arginyl residues of anion-binding sites. Eur J Biochem. 1980 Apr;105(2):387–393. doi: 10.1111/j.1432-1033.1980.tb04512.x. [DOI] [PubMed] [Google Scholar]
- Rayford R., Anthony D. D., Jr, O'Neill R. E., Jr, Merrick W. C. Reductive alkylation with oxidized nucleotides. Use in affinity labeling or affinity chromatography. J Biol Chem. 1985 Dec 15;260(29):15708–15713. [PubMed] [Google Scholar]
- Rest R. F., Frangipane J. V. Growth of Neisseria gonorrhoeae in CMP-N-acetylneuraminic acid inhibits nonopsonic (opacity-associated outer membrane protein-mediated) interactions with human neutrophils. Infect Immun. 1992 Mar;60(3):989–997. doi: 10.1128/iai.60.3.989-997.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz D. E., Gilham P. T. The sequence analysis of polyribonucleotides by stepwise chemical degradation. A method for the introduction of radioactive label into nucleoside fragments after cleavage. J Am Chem Soc. 1972 Dec 13;94(25):8921–8922. doi: 10.1021/ja00780a054. [DOI] [PubMed] [Google Scholar]
- Smith H., Parsons N. J., Cole J. A. Sialylation of neisserial lipopolysaccharide: a major influence on pathogenicity. Microb Pathog. 1995 Dec;19(6):365–377. doi: 10.1006/mpat.1995.0071. [DOI] [PubMed] [Google Scholar]
- Timmis K. N., Boulnois G. J., Bitter-Suermann D., Cabello F. C. Surface components of Escherichia coli that mediate resistance to the bactericidal activities of serum and phagocytes. Curr Top Microbiol Immunol. 1985;118:197–218. doi: 10.1007/978-3-642-70586-1_11. [DOI] [PubMed] [Google Scholar]
- Trees D. L., Morse S. A. Chancroid and Haemophilus ducreyi: an update. Clin Microbiol Rev. 1995 Jul;8(3):357–375. doi: 10.1128/cmr.8.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tullius M. V., Munson R. S., Jr, Wang J., Gibson B. W. Purification, cloning, and expression of a cytidine 5'-monophosphate N-acetylneuraminic acid synthetase from Haemophilus ducreyi. J Biol Chem. 1996 Jun 28;271(26):15373–15380. doi: 10.1074/jbc.271.26.15373. [DOI] [PubMed] [Google Scholar]
- White B. J., Levy H. R. Modification of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides with the 2',3'-dialdehyde derivative of NADP+ (oNADP+). J Biol Chem. 1987 Jan 25;262(3):1223–1229. [PubMed] [Google Scholar]
