Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Mar;8(3):603–613. doi: 10.1110/ps.8.3.603

Comparison of protein-protein interactions in serine protease-inhibitor and antibody-antigen complexes: implications for the protein docking problem.

R M Jackson 1
PMCID: PMC2144293  PMID: 10091663

Abstract

The protein-protein interaction energy of 12 nonhomologous serine protease-inhibitor and 15 antibody-antigen complexes is calculated using a molecular mechanics formalism and dissected in terms of the main-chain vs. side-chain contribution, nonrotameric side-chain contributions, and amino acid residue type involvement in the interface interaction. There are major differences in the interactions of the two types of protein-protein complex. Protease-inhibitor complexes interact predominantly through a main-chain-main-chain mechanism while antibody-antigen complexes interact predominantly through a side-chain-side-chain or a side-chain-main-chain mechanism. However, there is no simple correlation between the main-chain-main-chain interaction energy and the percentage of main-chain surface area buried on binding. The interaction energy is equally effected by the presence of nonrotameric side-chain conformations, which constitute approximately 20% of the interaction energy. The ability to reproduce the interface interaction energy of the crystal structure if original side-chain conformations are removed from the calculation is much greater in the protease-inhibitor complexes than the antibody-antigen complexes. The success of a rotameric model for protein-protein docking appears dependent on the extent of the main-chain-main-chain contribution to binding. Analysis of (1) residue type and (2) residue pair interactions at the interface show that antibody-antigen interactions are very restricted with over 70% of the antibody energy attributable to just six residue types (Tyr > Asp > Asn > Ser > Glu > Trp) in agreement with previous studies on residue propensity. However, it is found here that 50% of the antigen energy is attributable to just four residue types (Arg = Lys > Asn > Asp). On average just 12 residue pair interactions (6%) contribute over 40% of the favorable interaction energy in the antibody-antigen complexes, with charge-charge and charge/polar-tyrosine interactions being prominent. In contrast protease inhibitors use a diverse set of residue types and residue pair interactions.

Full Text

The Full Text of this article is available as a PDF (875.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajay, Murcko M. A. Computational methods to predict binding free energy in ligand-receptor complexes. J Med Chem. 1995 Dec 22;38(26):4953–4967. doi: 10.1021/jm00026a001. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Huber R. Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem. 1992 Mar 1;204(2):433–451. doi: 10.1111/j.1432-1033.1992.tb16654.x. [DOI] [PubMed] [Google Scholar]
  4. Chothia C. The nature of the accessible and buried surfaces in proteins. J Mol Biol. 1976 Jul 25;105(1):1–12. doi: 10.1016/0022-2836(76)90191-1. [DOI] [PubMed] [Google Scholar]
  5. Gabb H. A., Jackson R. M., Sternberg M. J. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol. 1997 Sep 12;272(1):106–120. doi: 10.1006/jmbi.1997.1203. [DOI] [PubMed] [Google Scholar]
  6. Jackson R. M., Gabb H. A., Sternberg M. J. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. J Mol Biol. 1998 Feb 13;276(1):265–285. doi: 10.1006/jmbi.1997.1519. [DOI] [PubMed] [Google Scholar]
  7. Jackson R. M., Sternberg M. J. A continuum model for protein-protein interactions: application to the docking problem. J Mol Biol. 1995 Jul 7;250(2):258–275. doi: 10.1006/jmbi.1995.0375. [DOI] [PubMed] [Google Scholar]
  8. Janin J. Protein-protein recognition. Prog Biophys Mol Biol. 1995;64(2-3):145–166. doi: 10.1016/s0079-6107(96)00001-6. [DOI] [PubMed] [Google Scholar]
  9. Jones S., Thornton J. M. Analysis of protein-protein interaction sites using surface patches. J Mol Biol. 1997 Sep 12;272(1):121–132. doi: 10.1006/jmbi.1997.1234. [DOI] [PubMed] [Google Scholar]
  10. Krystek S., Stouch T., Novotny J. Affinity and specificity of serine endopeptidase-protein inhibitor interactions. Empirical free energy calculations based on X-ray crystallographic structures. J Mol Biol. 1993 Dec 5;234(3):661–679. doi: 10.1006/jmbi.1993.1619. [DOI] [PubMed] [Google Scholar]
  11. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  12. Lawrence M. C., Colman P. M. Shape complementarity at protein/protein interfaces. J Mol Biol. 1993 Dec 20;234(4):946–950. doi: 10.1006/jmbi.1993.1648. [DOI] [PubMed] [Google Scholar]
  13. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  14. Lu W., Apostol I., Qasim M. A., Warne N., Wynn R., Zhang W. L., Anderson S., Chiang Y. W., Ogin E., Rothberg I. Binding of amino acid side-chains to S1 cavities of serine proteinases. J Mol Biol. 1997 Feb 21;266(2):441–461. doi: 10.1006/jmbi.1996.0781. [DOI] [PubMed] [Google Scholar]
  15. MacCallum R. M., Martin A. C., Thornton J. M. Antibody-antigen interactions: contact analysis and binding site topography. J Mol Biol. 1996 Oct 11;262(5):732–745. doi: 10.1006/jmbi.1996.0548. [DOI] [PubMed] [Google Scholar]
  16. McCammon J. A., Wolynes P. G., Karplus M. Picosecond dynamics of tyrosine side chains in proteins. Biochemistry. 1979 Mar 20;18(6):927–942. doi: 10.1021/bi00573a001. [DOI] [PubMed] [Google Scholar]
  17. Mian I. S., Bradwell A. R., Olson A. J. Structure, function and properties of antibody binding sites. J Mol Biol. 1991 Jan 5;217(1):133–151. doi: 10.1016/0022-2836(91)90617-f. [DOI] [PubMed] [Google Scholar]
  18. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  19. Novotny J., Bruccoleri R. E., Davis M., Sharp K. A. Empirical free energy calculations: a blind test and further improvements to the method. J Mol Biol. 1997 May 2;268(2):401–411. doi: 10.1006/jmbi.1997.0961. [DOI] [PubMed] [Google Scholar]
  20. Novotny J., Bruccoleri R. E., Saul F. A. On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. Biochemistry. 1989 May 30;28(11):4735–4749. doi: 10.1021/bi00437a034. [DOI] [PubMed] [Google Scholar]
  21. Padlan E. A. On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands. Proteins. 1990;7(2):112–124. doi: 10.1002/prot.340070203. [DOI] [PubMed] [Google Scholar]
  22. Pickersgill R. W. A rapid method of calculating charge-charge interaction energies in proteins. Protein Eng. 1988 Sep;2(3):247–248. doi: 10.1093/protein/2.3.247. [DOI] [PubMed] [Google Scholar]
  23. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  24. Qasim M. A., Ganz P. J., Saunders C. W., Bateman K. S., James M. N., Laskowski M., Jr Interscaffolding additivity. Association of P1 variants of eglin c and of turkey ovomucoid third domain with serine proteinases. Biochemistry. 1997 Feb 18;36(7):1598–1607. doi: 10.1021/bi9620870. [DOI] [PubMed] [Google Scholar]
  25. Schrauber H., Eisenhaber F., Argos P. Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins. J Mol Biol. 1993 Mar 20;230(2):592–612. doi: 10.1006/jmbi.1993.1172. [DOI] [PubMed] [Google Scholar]
  26. Sela M., Pecht I. The nature of the antigen. Adv Protein Chem. 1996;49:289–328. doi: 10.1016/s0065-3233(08)60492-1. [DOI] [PubMed] [Google Scholar]
  27. Sternberg M. J., Gabb H. A., Jackson R. M. Predictive docking of protein-protein and protein-DNA complexes. Curr Opin Struct Biol. 1998 Apr;8(2):250–256. doi: 10.1016/s0959-440x(98)80047-x. [DOI] [PubMed] [Google Scholar]
  28. Tuffery P., Etchebest C., Hazout S., Lavery R. A new approach to the rapid determination of protein side chain conformations. J Biomol Struct Dyn. 1991 Jun;8(6):1267–1289. doi: 10.1080/07391102.1991.10507882. [DOI] [PubMed] [Google Scholar]
  29. Weng Z., Vajda S., Delisi C. Prediction of protein complexes using empirical free energy functions. Protein Sci. 1996 Apr;5(4):614–626. doi: 10.1002/pro.5560050406. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES