Abstract
The protein-protein interaction energy of 12 nonhomologous serine protease-inhibitor and 15 antibody-antigen complexes is calculated using a molecular mechanics formalism and dissected in terms of the main-chain vs. side-chain contribution, nonrotameric side-chain contributions, and amino acid residue type involvement in the interface interaction. There are major differences in the interactions of the two types of protein-protein complex. Protease-inhibitor complexes interact predominantly through a main-chain-main-chain mechanism while antibody-antigen complexes interact predominantly through a side-chain-side-chain or a side-chain-main-chain mechanism. However, there is no simple correlation between the main-chain-main-chain interaction energy and the percentage of main-chain surface area buried on binding. The interaction energy is equally effected by the presence of nonrotameric side-chain conformations, which constitute approximately 20% of the interaction energy. The ability to reproduce the interface interaction energy of the crystal structure if original side-chain conformations are removed from the calculation is much greater in the protease-inhibitor complexes than the antibody-antigen complexes. The success of a rotameric model for protein-protein docking appears dependent on the extent of the main-chain-main-chain contribution to binding. Analysis of (1) residue type and (2) residue pair interactions at the interface show that antibody-antigen interactions are very restricted with over 70% of the antibody energy attributable to just six residue types (Tyr > Asp > Asn > Ser > Glu > Trp) in agreement with previous studies on residue propensity. However, it is found here that 50% of the antigen energy is attributable to just four residue types (Arg = Lys > Asn > Asp). On average just 12 residue pair interactions (6%) contribute over 40% of the favorable interaction energy in the antibody-antigen complexes, with charge-charge and charge/polar-tyrosine interactions being prominent. In contrast protease inhibitors use a diverse set of residue types and residue pair interactions.
Full Text
The Full Text of this article is available as a PDF (875.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ajay, Murcko M. A. Computational methods to predict binding free energy in ligand-receptor complexes. J Med Chem. 1995 Dec 22;38(26):4953–4967. doi: 10.1021/jm00026a001. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Bode W., Huber R. Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem. 1992 Mar 1;204(2):433–451. doi: 10.1111/j.1432-1033.1992.tb16654.x. [DOI] [PubMed] [Google Scholar]
- Chothia C. The nature of the accessible and buried surfaces in proteins. J Mol Biol. 1976 Jul 25;105(1):1–12. doi: 10.1016/0022-2836(76)90191-1. [DOI] [PubMed] [Google Scholar]
- Gabb H. A., Jackson R. M., Sternberg M. J. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol. 1997 Sep 12;272(1):106–120. doi: 10.1006/jmbi.1997.1203. [DOI] [PubMed] [Google Scholar]
- Jackson R. M., Gabb H. A., Sternberg M. J. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. J Mol Biol. 1998 Feb 13;276(1):265–285. doi: 10.1006/jmbi.1997.1519. [DOI] [PubMed] [Google Scholar]
- Jackson R. M., Sternberg M. J. A continuum model for protein-protein interactions: application to the docking problem. J Mol Biol. 1995 Jul 7;250(2):258–275. doi: 10.1006/jmbi.1995.0375. [DOI] [PubMed] [Google Scholar]
- Janin J. Protein-protein recognition. Prog Biophys Mol Biol. 1995;64(2-3):145–166. doi: 10.1016/s0079-6107(96)00001-6. [DOI] [PubMed] [Google Scholar]
- Jones S., Thornton J. M. Analysis of protein-protein interaction sites using surface patches. J Mol Biol. 1997 Sep 12;272(1):121–132. doi: 10.1006/jmbi.1997.1234. [DOI] [PubMed] [Google Scholar]
- Krystek S., Stouch T., Novotny J. Affinity and specificity of serine endopeptidase-protein inhibitor interactions. Empirical free energy calculations based on X-ray crystallographic structures. J Mol Biol. 1993 Dec 5;234(3):661–679. doi: 10.1006/jmbi.1993.1619. [DOI] [PubMed] [Google Scholar]
- Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
- Lawrence M. C., Colman P. M. Shape complementarity at protein/protein interfaces. J Mol Biol. 1993 Dec 20;234(4):946–950. doi: 10.1006/jmbi.1993.1648. [DOI] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Lu W., Apostol I., Qasim M. A., Warne N., Wynn R., Zhang W. L., Anderson S., Chiang Y. W., Ogin E., Rothberg I. Binding of amino acid side-chains to S1 cavities of serine proteinases. J Mol Biol. 1997 Feb 21;266(2):441–461. doi: 10.1006/jmbi.1996.0781. [DOI] [PubMed] [Google Scholar]
- MacCallum R. M., Martin A. C., Thornton J. M. Antibody-antigen interactions: contact analysis and binding site topography. J Mol Biol. 1996 Oct 11;262(5):732–745. doi: 10.1006/jmbi.1996.0548. [DOI] [PubMed] [Google Scholar]
- McCammon J. A., Wolynes P. G., Karplus M. Picosecond dynamics of tyrosine side chains in proteins. Biochemistry. 1979 Mar 20;18(6):927–942. doi: 10.1021/bi00573a001. [DOI] [PubMed] [Google Scholar]
- Mian I. S., Bradwell A. R., Olson A. J. Structure, function and properties of antibody binding sites. J Mol Biol. 1991 Jan 5;217(1):133–151. doi: 10.1016/0022-2836(91)90617-f. [DOI] [PubMed] [Google Scholar]
- Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
- Novotny J., Bruccoleri R. E., Davis M., Sharp K. A. Empirical free energy calculations: a blind test and further improvements to the method. J Mol Biol. 1997 May 2;268(2):401–411. doi: 10.1006/jmbi.1997.0961. [DOI] [PubMed] [Google Scholar]
- Novotny J., Bruccoleri R. E., Saul F. A. On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. Biochemistry. 1989 May 30;28(11):4735–4749. doi: 10.1021/bi00437a034. [DOI] [PubMed] [Google Scholar]
- Padlan E. A. On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands. Proteins. 1990;7(2):112–124. doi: 10.1002/prot.340070203. [DOI] [PubMed] [Google Scholar]
- Pickersgill R. W. A rapid method of calculating charge-charge interaction energies in proteins. Protein Eng. 1988 Sep;2(3):247–248. doi: 10.1093/protein/2.3.247. [DOI] [PubMed] [Google Scholar]
- Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
- Qasim M. A., Ganz P. J., Saunders C. W., Bateman K. S., James M. N., Laskowski M., Jr Interscaffolding additivity. Association of P1 variants of eglin c and of turkey ovomucoid third domain with serine proteinases. Biochemistry. 1997 Feb 18;36(7):1598–1607. doi: 10.1021/bi9620870. [DOI] [PubMed] [Google Scholar]
- Schrauber H., Eisenhaber F., Argos P. Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins. J Mol Biol. 1993 Mar 20;230(2):592–612. doi: 10.1006/jmbi.1993.1172. [DOI] [PubMed] [Google Scholar]
- Sela M., Pecht I. The nature of the antigen. Adv Protein Chem. 1996;49:289–328. doi: 10.1016/s0065-3233(08)60492-1. [DOI] [PubMed] [Google Scholar]
- Sternberg M. J., Gabb H. A., Jackson R. M. Predictive docking of protein-protein and protein-DNA complexes. Curr Opin Struct Biol. 1998 Apr;8(2):250–256. doi: 10.1016/s0959-440x(98)80047-x. [DOI] [PubMed] [Google Scholar]
- Tuffery P., Etchebest C., Hazout S., Lavery R. A new approach to the rapid determination of protein side chain conformations. J Biomol Struct Dyn. 1991 Jun;8(6):1267–1289. doi: 10.1080/07391102.1991.10507882. [DOI] [PubMed] [Google Scholar]
- Weng Z., Vajda S., Delisi C. Prediction of protein complexes using empirical free energy functions. Protein Sci. 1996 Apr;5(4):614–626. doi: 10.1002/pro.5560050406. [DOI] [PMC free article] [PubMed] [Google Scholar]