Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Mar;8(3):635–643. doi: 10.1110/ps.8.3.635

Cloning, mutagenesis, and structural analysis of human pancreatic alpha-amylase expressed in Pichia pastoris.

E H Rydberg 1, G Sidhu 1, H C Vo 1, J Hewitt 1, H C Côte 1, Y Wang 1, S Numao 1, R T MacGillivray 1, C M Overall 1, G D Brayer 1, S G Withers 1
PMCID: PMC2144294  PMID: 10091666

Abstract

Human pancreatic alpha-amylase (HPA) was expressed in the methylotrophic yeast Pichia pastoris and two mutants (D197A and D197N) of a completely conserved active site carboxylic acid were generated. All recombinant proteins were shown by electrospray ionization mass spectrometry (ESI-MS) to be glycosylated and the site of attachment was shown to be Asn461 by peptide mapping in conjunction with ESI-MS. Treatment of these proteins with endoglycosidase F demonstrated that they contained a single N-linked oligosaccharide and yielded a protein product with a single N-acetyl glucosamine (GlcNAc), which could be crystallized. Solution of the crystal structure to a resolution of 2.0 A confirmed the location of the glycosyl group as Asn461 and showed that the recombinant protein had essentially the same conformation as the native enzyme. The kinetic parameters of the glycosylated and deglycosylated wild-type proteins were the same while the k(cat)/Km values for D197A and D197N were 10(6)-10(7) times lower than the wild-type enzyme. The decreased k(cat)/Km values for the mutants confirm that D197 plays a crucial role in the hydrolytic activity of HPA, presumably as the catalytic nucleophile.

Full Text

The Full Text of this article is available as a PDF (248.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Bompard-Gilles C., Rousseau P., Rougé P., Payan F. Substrate mimicry in the active center of a mammalian alpha-amylase: structural analysis of an enzyme-inhibitor complex. Structure. 1996 Dec 15;4(12):1441–1452. doi: 10.1016/s0969-2126(96)00151-7. [DOI] [PubMed] [Google Scholar]
  3. Brady R. L., Brzozowski A. M., Derewenda Z. S., Dodson E. J., Dodson G. G. Solution of the structure of Aspergillus niger acid alpha-amylase by combined molecular replacement and multiple isomorphous replacement methods. Acta Crystallogr B. 1991 Aug 1;47(Pt 4):527–535. doi: 10.1107/s0108768191001908. [DOI] [PubMed] [Google Scholar]
  4. Braun C., Lindhorst T., Madsen N. B., Withers S. G. Identification of Asp 549 as the catalytic nucleophile of glycogen-debranching enzyme via trapping of the glycosyl-enzyme intermediate. Biochemistry. 1996 Apr 30;35(17):5458–5463. doi: 10.1021/bi9526488. [DOI] [PubMed] [Google Scholar]
  5. Braun C., Meinke A., Ziser L., Withers S. G. Simultaneous high-performance liquid chromatographic determination of both the cleavage pattern and the stereochemical outcome of the hydrolysis reactions catalyzed by various glycosidases. Anal Biochem. 1993 Jul;212(1):259–262. doi: 10.1006/abio.1993.1320. [DOI] [PubMed] [Google Scholar]
  6. Brayer G. D., Luo Y., Withers S. G. The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 1995 Sep;4(9):1730–1742. doi: 10.1002/pro.5560040908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brzozowski A. M., Davies G. J. Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 A resolution. Biochemistry. 1997 Sep 9;36(36):10837–10845. doi: 10.1021/bi970539i. [DOI] [PubMed] [Google Scholar]
  8. Buisson G., Duée E., Haser R., Payan F. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J. 1987 Dec 20;6(13):3909–3916. doi: 10.1002/j.1460-2075.1987.tb02731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Cregg J. M., Vedvick T. S., Raschke W. C. Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology (N Y) 1993 Aug;11(8):905–910. doi: 10.1038/nbt0893-905. [DOI] [PubMed] [Google Scholar]
  11. Desai U. J., Pfaffle P. K. Single-step purification of a thermostable DNA polymerase expressed in Escherichia coli. Biotechniques. 1995 Nov;19(5):780-2, 784. [PubMed] [Google Scholar]
  12. Grinna L. S., Tschopp J. F. Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, Pichia pastoris. Yeast. 1989 Mar-Apr;5(2):107–115. doi: 10.1002/yea.320050206. [DOI] [PubMed] [Google Scholar]
  13. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henrissat B., Callebaut I., Fabrega S., Lehn P., Mornon J. P., Davies G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7090–7094. doi: 10.1073/pnas.92.15.7090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henrissat B., Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997 Oct;7(5):637–644. doi: 10.1016/s0959-440x(97)80072-3. [DOI] [PubMed] [Google Scholar]
  16. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  17. Juge N., Andersen J. S., Tull D., Roepstorff P., Svensson B. Overexpression, purification, and characterization of recombinant barley alpha-amylases 1 and 2 secreted by the methylotrophic yeast Pichia pastoris. Protein Expr Purif. 1996 Sep;8(2):204–214. doi: 10.1006/prep.1996.0093. [DOI] [PubMed] [Google Scholar]
  18. Kadziola A., Abe J., Svensson B., Haser R. Crystal and molecular structure of barley alpha-amylase. J Mol Biol. 1994 May 27;239(1):104–121. doi: 10.1006/jmbi.1994.1354. [DOI] [PubMed] [Google Scholar]
  19. Klein C., Hollender J., Bender H., Schulz G. E. Catalytic center of cyclodextrin glycosyltransferase derived from X-ray structure analysis combined with site-directed mutagenesis. Biochemistry. 1992 Sep 22;31(37):8740–8746. doi: 10.1021/bi00152a009. [DOI] [PubMed] [Google Scholar]
  20. Ledermann H., Höxter G. Wirkung von Acarbose auf den postprandialen Blutzuckeranstieg. Additiver Akuteffekt der einmal täglichen Gabe bei insulinbehandelten Diabetikern. Fortschr Med. 1994 Nov 20;112(32):467–470. [PubMed] [Google Scholar]
  21. Linnevers C. J., McGrath M. E., Armstrong R., Mistry F. R., Barnes M. G., Klaus J. L., Palmer J. T., Katz B. A., Brömme D. Expression of human cathepsin K in Pichia pastoris and preliminary crystallographic studies of an inhibitor complex. Protein Sci. 1997 Apr;6(4):919–921. doi: 10.1002/pro.5560060421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu J., Tse A. G., Chang H. C., Liu J. h., Wang J., Hussey R. E., Chishti Y., Rheinhold B., Spoerl R., Nathenson S. G. Crystallization of a deglycosylated T cell receptor (TCR) complexed with an anti-TCR Fab fragment. J Biol Chem. 1996 Dec 27;271(52):33639–33646. doi: 10.1074/jbc.271.52.33639. [DOI] [PubMed] [Google Scholar]
  23. MacLeod A. M., Tull D., Rupitz K., Warren R. A., Withers S. G. Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi. Biochemistry. 1996 Oct 8;35(40):13165–13172. doi: 10.1021/bi9610616. [DOI] [PubMed] [Google Scholar]
  24. Matsuo T., Odaka H., Ikeda H. Effect of an intestinal disaccharidase inhibitor (AO-128) on obesity and diabetes. Am J Clin Nutr. 1992 Jan;55(1 Suppl):314S–317S. doi: 10.1093/ajcn/55.1.314s. [DOI] [PubMed] [Google Scholar]
  25. McCarter J. D., Adam M. J., Braun C., Namchuk M., Tull D., Withers S. G. Syntheses of 2-deoxy-2-fluoro mono- and oligo-saccharide glycosides from glycals and evaluation as glycosidase inhibitors. Carbohydr Res. 1993 Oct 18;249(1):77–90. doi: 10.1016/0008-6215(93)84061-a. [DOI] [PubMed] [Google Scholar]
  26. McCarter J. D., Withers S. G. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol. 1994 Dec;4(6):885–892. doi: 10.1016/0959-440x(94)90271-2. [DOI] [PubMed] [Google Scholar]
  27. McCarter J. D., Withers S. G. Unequivocal identification of Asp-214 as the catalytic nucleophile of Saccharomyces cerevisiae alpha-glucosidase using 5-fluoro glycosyl fluorides. J Biol Chem. 1996 Mar 22;271(12):6889–6894. doi: 10.1074/jbc.271.12.6889. [DOI] [PubMed] [Google Scholar]
  28. McIntosh L. P., Hand G., Johnson P. E., Joshi M. D., Körner M., Plesniak L. A., Ziser L., Wakarchuk W. W., Withers S. G. The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: a 13C-NMR study of bacillus circulans xylanase. Biochemistry. 1996 Aug 6;35(31):9958–9966. doi: 10.1021/bi9613234. [DOI] [PubMed] [Google Scholar]
  29. Mosi R., He S., Uitdehaag J., Dijkstra B. W., Withers S. G. Trapping and characterization of the reaction intermediate in cyclodextrin glycosyltransferase by use of activated substrates and a mutant enzyme. Biochemistry. 1997 Aug 12;36(32):9927–9934. doi: 10.1021/bi970618u. [DOI] [PubMed] [Google Scholar]
  30. Nelson R. M., Long G. L. A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction. Anal Biochem. 1989 Jul;180(1):147–151. doi: 10.1016/0003-2697(89)90103-6. [DOI] [PubMed] [Google Scholar]
  31. Nersissian A. M., Mehrabian Z. B., Nalbandyan R. M., Hart P. J., Fraczkiewicz G., Czernuszewicz R. S., Bender C. J., Peisach J., Herrmann R. G., Valentine J. S. Cloning, expression, and spectroscopic characterization of Cucumis sativus stellacyanin in its nonglycosylated form. Protein Sci. 1996 Nov;5(11):2184–2192. doi: 10.1002/pro.5560051105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Noda K., Umeda F., Nawata H. Effect of acarbose on glucose intolerance in patients with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1997 Aug;37(2):129–136. doi: 10.1016/s0168-8227(97)00066-1. [DOI] [PubMed] [Google Scholar]
  33. Qian M., Haser R., Buisson G., Duée E., Payan F. The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic alpha-amylase with a carbohydrate inhibitor refined to 2.2-A resolution. Biochemistry. 1994 May 24;33(20):6284–6294. doi: 10.1021/bi00186a031. [DOI] [PubMed] [Google Scholar]
  34. Qian M., Spinelli S., Driguez H., Payan F. Structure of a pancreatic alpha-amylase bound to a substrate analogue at 2.03 A resolution. Protein Sci. 1997 Nov;6(11):2285–2296. doi: 10.1002/pro.5560061102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ramasubbu N., Paloth V., Luo Y., Brayer G. D., Levine M. J. Structure of human salivary alpha-amylase at 1.6 A resolution: implications for its role in the oral cavity. Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):435–446. doi: 10.1107/S0907444995014119. [DOI] [PubMed] [Google Scholar]
  36. Reaven G. M., Lardinois C. K., Greenfield M. S., Schwartz H. C., Vreman H. J. Effect of acarbose on carbohydrate and lipid metabolism in NIDDM patients poorly controlled by sulfonylureas. Diabetes Care. 1990 Aug;13 (Suppl 3):32–36. doi: 10.2337/diacare.13.3.32. [DOI] [PubMed] [Google Scholar]
  37. Shakin-Eshleman S. H., Spitalnik S. L., Kasturi L. The amino acid at the X position of an Asn-X-Ser sequon is an important determinant of N-linked core-glycosylation efficiency. J Biol Chem. 1996 Mar 15;271(11):6363–6366. doi: 10.1074/jbc.271.11.6363. [DOI] [PubMed] [Google Scholar]
  38. Strömqvist M., Gruffman H. Periodic acid/Schiff staining of glycoproteins immobilized on a blotting matrix. Biotechniques. 1992 Nov;13(5):744-6, 749. [PubMed] [Google Scholar]
  39. Suzuki A., Yamane T., Ito Y., Nishio T., Fujiwara H., Ashida T. Crystallization and preliminary crystallographic study of bacterial alpha-amylases. J Biochem. 1990 Sep;108(3):379–381. doi: 10.1093/oxfordjournals.jbchem.a123209. [DOI] [PubMed] [Google Scholar]
  40. Swift H. J., Brady L., Derewenda Z. S., Dodson E. J., Dodson G. G., Turkenburg J. P., Wilkinson A. J. Structure and molecular model refinement of Aspergillus oryzae (TAKA) alpha-amylase: an application of the simulated-annealing method. Acta Crystallogr B. 1991 Aug 1;47(Pt 4):535–544. doi: 10.1107/s0108768191001970. [DOI] [PubMed] [Google Scholar]
  41. Trimble R. B., Atkinson P. H., Tschopp J. F., Townsend R. R., Maley F. Structure of oligosaccharides on Saccharomyces SUC2 invertase secreted by the methylotrophic yeast Pichia pastoris. J Biol Chem. 1991 Dec 5;266(34):22807–22817. [PubMed] [Google Scholar]
  42. Wiegand G., Epp O., Huber R. The crystal structure of porcine pancreatic alpha-amylase in complex with the microbial inhibitor Tendamistat. J Mol Biol. 1995 Mar 17;247(1):99–110. doi: 10.1006/jmbi.1994.0125. [DOI] [PubMed] [Google Scholar]
  43. Withers S. G., Aebersold R. Approaches to labeling and identification of active site residues in glycosidases. Protein Sci. 1995 Mar;4(3):361–372. doi: 10.1002/pro.5560040302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yuan J., Martinez-Bilbao M., Huber R. E. Substitutions for Glu-537 of beta-galactosidase from Escherichia coli cause large decreases in catalytic activity. Biochem J. 1994 Apr 15;299(Pt 2):527–531. doi: 10.1042/bj2990527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zakowski J. J., Bruns D. E. Biochemistry of human alpha amylase isoenzymes. Crit Rev Clin Lab Sci. 1985;21(4):283–322. doi: 10.3109/10408368509165786. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES