Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Apr;8(4):883–889. doi: 10.1110/ps.8.4.883

Selection of antibody probes to correlate protein sequence domains with their structural distribution.

M Valle 1, M Muñoz 1, L Kremer 1, J M Valpuesta 1, C Martínez-A 1, J L Carrascosa 1, J P Albar 1
PMCID: PMC2144296  PMID: 10211834

Abstract

We propose a new approach that permits correlation of specific domains defined by their primary sequence with their location in the structure of complex macromolecular aggregates. It is based on the combination of well-established structural analysis methods that incorporate the use of overlapping peptides on cellulose membranes for the isolation and purification of specific antibodies from a polyclonal antiserum. Monospecific antibodies to the connector protein of bacteriophage phi29 were isolated from polyclonal antisera using a new development of the spotscan method. These antibodies can be purified in quantities that allow antigenicity testing in enzyme-linked immunosorbent assays, Western blotting and immunoprecipitations, demonstrating the specificity of this isolation procedure. This approach has allowed us to generate direct antibody probes for immunoelectron microscopy mapping of different connector protein domains in a low resolution three-dimensional epitope map.

Full Text

The Full Text of this article is available as a PDF (547.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler S., Frank R., Lanzavecchia A., Weiss S. T cell epitope analysis with peptides simultaneously synthesized on cellulose membranes: fine mapping of two DQ dependent epitopes. FEBS Lett. 1994 Sep 26;352(2):167–170. doi: 10.1016/0014-5793(94)00950-3. [DOI] [PubMed] [Google Scholar]
  2. Beattie J., Fawcett H. A., Flint D. J. The use of multiple-pin peptide synthesis in an analysis of the continuous epitopes recognised by various anti-(recombinant bovine growth hormone) sera. Comparison with predicted regions of immunogenicity and location within the three-dimensional structure of the molecule. Eur J Biochem. 1992 Nov 15;210(1):59–66. doi: 10.1111/j.1432-1033.1992.tb17390.x. [DOI] [PubMed] [Google Scholar]
  3. Beck-Sickinger A. G., Jung G. Epitope mapping: synthetic approaches to the understanding of molecular recognition in the immune system. Pharm Acta Helv. 1993;68(1):3–20. doi: 10.1016/0031-6865(93)90003-o. [DOI] [PubMed] [Google Scholar]
  4. Bertoni G., Kostyal D. A., Reisert P. S., Humphreys R. E., Sairenji T. Synthetic peptides to identify antigenic determinants on Epstein-Barr virus gp350/220. Intervirology. 1990;31(5):290–294. doi: 10.1159/000150164. [DOI] [PubMed] [Google Scholar]
  5. Commandeur U., Koenig R., Manteuffel R., Torrance L., Lüddecke P., Frank R. Location, size, and complexity of epitopes on the coat protein of beet necrotic yellow vein virus studied by means of synthetic overlapping peptides. Virology. 1994 Jan;198(1):282–287. doi: 10.1006/viro.1994.1031. [DOI] [PubMed] [Google Scholar]
  6. Donate L. E., Valpuesta J. M., Mier C., Rojo F., Carrascosa J. L. Characterization of an RNA-binding domain in the bacteriophage phi 29 connector. J Biol Chem. 1993 Sep 25;268(27):20198–20204. [PubMed] [Google Scholar]
  7. Donate L. E., Valpuesta J. M., Rocher A., Méndez E., Rojo F., Salas M., Carrascosa J. L. Role of the amino-terminal domain of bacteriophage phi 29 connector in DNA binding and packaging. J Biol Chem. 1992 May 25;267(15):10919–10924. [PubMed] [Google Scholar]
  8. Frank R., Overwin H. SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Methods Mol Biol. 1996;66:149–169. doi: 10.1385/0-89603-375-9:149. [DOI] [PubMed] [Google Scholar]
  9. Gao B., Esnouf M. P. Multiple interactive residues of recognition: elucidation of discontinuous epitopes with linear peptides. J Immunol. 1996 Jul 1;157(1):183–188. [PubMed] [Google Scholar]
  10. Gausepohl H., Boulin C., Kraft M., Frank R. W. Automated multiple peptide synthesis. Pept Res. 1992 Nov-Dec;5(6):315–320. [PubMed] [Google Scholar]
  11. Geysen H. M., Meloen R. H., Barteling S. J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3998–4002. doi: 10.1073/pnas.81.13.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Herranz L., Bordas J., Towns-Andrews E., Mendez E., Usobiaga P., Carrascosa J. L. Conformational changes in bacteriophage phi 29 connector prevents DNA-binding activity. J Mol Biol. 1990 May 20;213(2):263–273. doi: 10.1016/s0022-2836(05)80189-5. [DOI] [PubMed] [Google Scholar]
  13. Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5131–5135. doi: 10.1073/pnas.82.15.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Höhne W. E., Küttner G., Kiessig S., Hausdorf G., Grunow R., Winkler K., Wessner H., Giessmann E., Stigler R., Schneider-Mergener J. Structural base of the interaction of a monoclonal antibody against p24 of HIV-1 with its peptide epitope. Mol Immunol. 1993 Sep;30(13):1213–1221. doi: 10.1016/0161-5890(93)90140-7. [DOI] [PubMed] [Google Scholar]
  15. Ibáez C., García J. A., Carrascosa J. L., Salas M. Overproduction and purification of the connector protein of Bacillus subtilis phage phi 29. Nucleic Acids Res. 1984 Mar 12;12(5):2351–2365. doi: 10.1093/nar/12.5.2351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kramer A., Keitel T., Winkler K., Stöcklein W., Höhne W., Schneider-Mergener J. Molecular basis for the binding promiscuity of an anti-p24 (HIV-1) monoclonal antibody. Cell. 1997 Dec 12;91(6):799–809. doi: 10.1016/s0092-8674(00)80468-7. [DOI] [PubMed] [Google Scholar]
  17. Marabini R, Masegosa IM, San Martin MC, Marco S, Fernandez JJ, de la Fraga LG, Vaquerizo C, Carazo JM. Xmipp: An Image Processing Package for Electron Microscopy. J Struct Biol. 1996 Oct;116(1):237–240. doi: 10.1006/jsbi.1996.0036. [DOI] [PubMed] [Google Scholar]
  18. Martens W., Greiser-Wilke I., Harder T. C., Dittmar K., Frank R., Orvell C., Moennig V., Liess B. Spot synthesis of overlapping peptides on paper membrane supports enables the identification of linear monoclonal antibody binding determinants on morbillivirus phosphoproteins. Vet Microbiol. 1995 May;44(2-4):289–298. doi: 10.1016/0378-1135(95)00023-4. [DOI] [PubMed] [Google Scholar]
  19. Müller D. J., Engel A., Carrascosa J. L., Vélez M. The bacteriophage phi29 head-tail connector imaged at high resolution with the atomic force microscope in buffer solution. EMBO J. 1997 May 15;16(10):2547–2553. doi: 10.1093/emboj/16.10.2547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Penczek P., Radermacher M., Frank J. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy. 1992 Jan;40(1):33–53. [PubMed] [Google Scholar]
  21. Reineke U., Sabat R., Kramer A., Stigler R. D., Seifert M., Michel T., Volk H. D., Schneider-Mergener J. Mapping protein-protein contact sites using cellulose-bound peptide scans. Mol Divers. 1996 May;1(3):141–148. doi: 10.1007/BF01544952. [DOI] [PubMed] [Google Scholar]
  22. Reineke U., Sabat R., Volk H. D., Schneider-Mergener J. Mapping of the interleukin-10/interleukin-10 receptor combining site. Protein Sci. 1998 Apr;7(4):951–960. doi: 10.1002/pro.5560070412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reusch P., Arnold S., Heusser C., Wagner K., Weston B., Sebald W. Neutralizing monoclonal antibodies define two different functional sites in human interleukin-4. Eur J Biochem. 1994 Jun 1;222(2):491–499. doi: 10.1111/j.1432-1033.1994.tb18890.x. [DOI] [PubMed] [Google Scholar]
  24. Stigler R. D., Rüker F., Katinger D., Elliott G., Höhne W., Henklein P., Ho J. X., Keeling K., Carter D. C., Nugel E. Interaction between a Fab fragment against gp41 of human immunodeficiency virus 1 and its peptide epitope: characterization using a peptide epitope library and molecular modeling. Protein Eng. 1995 May;8(5):471–479. doi: 10.1093/protein/8.5.471. [DOI] [PubMed] [Google Scholar]
  25. Tegge W., Frank R., Hofmann F., Dostmann W. R. Determination of cyclic nucleotide-dependent protein kinase substrate specificity by the use of peptide libraries on cellulose paper. Biochemistry. 1995 Aug 22;34(33):10569–10577. doi: 10.1021/bi00033a032. [DOI] [PubMed] [Google Scholar]
  26. Toomik R., Edlund M., Ek P., Obrink B., Engström L. Simultaneously synthesized peptides on continuous cellulose membranes as substrates for protein kinases. Pept Res. 1996 Jan-Feb;9(1):6–11. [PubMed] [Google Scholar]
  27. Tribbick G., Triantafyllou B., Lauricella R., Rodda S. J., Mason T. J., Geysen H. M. Systematic fractionation of serum antibodies using multiple antigen homologous peptides as affinity ligands. J Immunol Methods. 1991 Jun 3;139(2):155–166. doi: 10.1016/0022-1759(91)90185-i. [DOI] [PubMed] [Google Scholar]
  28. Valpuesta J. M., Carrascosa J. L. Structure of viral connectors and their function in bacteriophage assembly and DNA packaging. Q Rev Biophys. 1994 May;27(2):107–155. doi: 10.1017/s0033583500004510. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES