Abstract
We have investigated the solution conformation of the functionally relevant C-terminal extremes of alpha- and beta-tubulin, employing the model recombinant peptides RL52alpha3 and RL33beta6, which correspond to the amino acid sequences 404-451(end) and 394-445(end) of the main vertebrate isotypes of alpha- and beta-tubulin, respectively, and synthetic peptides with the alpha-tubulin(430-443) and beta-tubulin(412-431) internal sequences. Alpha(404-451) and beta(394-445) are monomeric in neutral aqueous solution (as indicated by sedimentation equilibrium), and have circular dichroism (CD) spectra characteristic of nearly disordered conformation, consistent with low scores in peptide helicity prediction. Limited proteolysis of beta(394-445) with subtilisin, instead of giving extensive degradation, resulted in main cleavages at positions Thr409-Glu410 and Tyr422-Gln423-Gln424, defining the proteolysis resistant segment 410-422, which corresponds to the central part of the predicted beta-tubulin C-terminal helix. Both recombinant peptides inhibited microtubule assembly, probably due to sequestration of the microtubule stabilizing associated proteins. Trifluoroethanol (TFE)-induced markedly helical CD spectra in alpha(404-451) and beta(394-445). A substantial part of the helicity of beta(394-445) was found to be in the CD spectrum of the shorter peptide beta(412-431) with TFE. Two-dimensional 1H-NMR parameters (nonsequential nuclear Overhauser effects (NOE) and conformational C alphaH shifts) in 30% TFE permitted to conclude that about 25% of alpha(404-451) and 40% of beta(394-451) form well-defined helices encompassing residues 418-432 and 408-431, respectively, flanked by disordered N- and C-segments. The side chains of beta(394-451) residues Leu418, Val419, Ser420, Tyr422, Tyr425, and Gln426 are well defined in structure calculations from the NOE distance constraints. The apolar faces of the helix in both alpha and beta chains share a characteristic sequence of conserved residues Ala,Met(+4),Leu(+7),Tyr(+11). The helical segment of alpha(404-451) is the same as that described in the electron crystallographic model structure of alphabeta-tubulin, while in beta(394-451) it extends for nine residues more, supporting the possibility of a functional coil --> helix transition at the C-terminus of beta-tubulin. These peptides may be employed to construct model complexes with microtubule associated protein binding sites.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreu D., de la Viña S., Andreu J. M. Chemical synthesis of five tubulin antigenic sequences. Production and characterization of their corresponding anti-tubulin monospecific antibodies. Int J Pept Protein Res. 1988 Jun;31(6):555–566. [PubMed] [Google Scholar]
- Berger B., Wilson D. B., Wolf E., Tonchev T., Milla M., Kim P. S. Predicting coiled coils by use of pairwise residue correlations. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8259–8263. doi: 10.1073/pnas.92.18.8259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Butner K. A., Kirschner M. W. Tau protein binds to microtubules through a flexible array of distributed weak sites. J Cell Biol. 1991 Nov;115(3):717–730. doi: 10.1083/jcb.115.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Case D. A., Dyson H. J., Wright P. E. Use of chemical shifts and coupling constants in nuclear magnetic resonance structural studies on peptides and proteins. Methods Enzymol. 1994;239:392–416. doi: 10.1016/s0076-6879(94)39015-0. [DOI] [PubMed] [Google Scholar]
- Chau M. F., Radeke M. J., de Inés C., Barasoain I., Kohlstaedt L. A., Feinstein S. C. The microtubule-associated protein tau cross-links to two distinct sites on each alpha and beta tubulin monomer via separate domains. Biochemistry. 1998 Dec 22;37(51):17692–17703. doi: 10.1021/bi9812118. [DOI] [PubMed] [Google Scholar]
- Cowan N. J., Dobner P. R., Fuchs E. V., Cleveland D. W. Expression of human alpha-tubulin genes: interspecies conservation of 3' untranslated regions. Mol Cell Biol. 1983 Oct;3(10):1738–1745. doi: 10.1128/mcb.3.10.1738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dyson H. J., Rance M., Houghten R. A., Wright P. E., Lerner R. A. Folding of immunogenic peptide fragments of proteins in water solution. II. The nascent helix. J Mol Biol. 1988 May 5;201(1):201–217. doi: 10.1016/0022-2836(88)90447-0. [DOI] [PubMed] [Google Scholar]
- Eddé B., Rossier J., Le Caer J. P., Desbruyères E., Gros F., Denoulet P. Posttranslational glutamylation of alpha-tubulin. Science. 1990 Jan 5;247(4938):83–85. doi: 10.1126/science.1967194. [DOI] [PubMed] [Google Scholar]
- Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
- Fleming L. M., Johnson G. V. Modulation of the phosphorylation state of tau in situ: the roles of calcium and cyclic AMP. Biochem J. 1995 Jul 1;309(Pt 1):41–47. doi: 10.1042/bj3090041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- González C., Lagos R., Monasterio O. Recovery of soluble protein after expression in Escherichia coli depends on cellular disruption conditions. Microbios. 1996;85(345):205–212. [PubMed] [Google Scholar]
- Gustke N., Trinczek B., Biernat J., Mandelkow E. M., Mandelkow E. Domains of tau protein and interactions with microtubules. Biochemistry. 1994 Aug 16;33(32):9511–9522. doi: 10.1021/bi00198a017. [DOI] [PubMed] [Google Scholar]
- Güntert P., Braun W., Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991 Feb 5;217(3):517–530. doi: 10.1016/0022-2836(91)90754-t. [DOI] [PubMed] [Google Scholar]
- Jimenez M. A., Bruix M., Gonzalez C., Blanco F. J., Nieto J. L., Herranz J., Rico M. CD and 1H-NMR studies on the conformational properties of peptide fragments from the C-terminal domain of thermolysin. Eur J Biochem. 1993 Feb 1;211(3):569–581. doi: 10.1111/j.1432-1033.1993.tb17584.x. [DOI] [PubMed] [Google Scholar]
- Jiménez M. A., Muñoz V., Rico M., Serrano L. Helix stop and start signals in peptides and proteins. The capping box does not necessarily prevent helix elongation. J Mol Biol. 1994 Sep 30;242(4):487–496. doi: 10.1006/jmbi.1994.1596. [DOI] [PubMed] [Google Scholar]
- Johnson M. L., Correia J. J., Yphantis D. A., Halvorson H. R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys J. 1981 Dec;36(3):575–588. doi: 10.1016/S0006-3495(81)84753-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karr T. L., White H. D., Coughlin B. A., Purich D. L. A brain microtubule protein preparation depleted of mitochondrial and synaptosomal components. Methods Cell Biol. 1982;24:51–60. doi: 10.1016/s0091-679x(08)60647-0. [DOI] [PubMed] [Google Scholar]
- Kotani S., Kawai G., Yokoyama S., Murofushi H. Interaction mechanism between microtubule-associated proteins and microtubules. A proton nuclear magnetic resonance analysis on the binding of synthetic peptide to tubulin. Biochemistry. 1990 Oct 30;29(43):10049–10054. doi: 10.1021/bi00495a006. [DOI] [PubMed] [Google Scholar]
- Krueger K. A., Bhatt H., Landt M., Easom R. A. Calcium-stimulated phosphorylation of MAP-2 in pancreatic betaTC3-cells is mediated by Ca2+/calmodulin-dependent kinase II. J Biol Chem. 1997 Oct 24;272(43):27464–27469. doi: 10.1074/jbc.272.43.27464. [DOI] [PubMed] [Google Scholar]
- Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
- Larcher J. C., Boucher D., Lazereg S., Gros F., Denoulet P. Interaction of kinesin motor domains with alpha- and beta-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation. J Biol Chem. 1996 Sep 6;271(36):22117–22124. doi: 10.1074/jbc.271.36.22117. [DOI] [PubMed] [Google Scholar]
- Littauer U. Z., Giveon D., Thierauf M., Ginzburg I., Ponstingl H. Common and distinct tubulin binding sites for microtubule-associated proteins. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7162–7166. doi: 10.1073/pnas.83.19.7162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lobert S., Hennington B. S., Correia J. J. Multiple sites for subtilisin cleavage of tubulin: effects of divalent cations. Cell Motil Cytoskeleton. 1993;25(3):282–297. doi: 10.1002/cm.970250308. [DOI] [PubMed] [Google Scholar]
- Ludueña R. F. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol. 1998;178:207–275. doi: 10.1016/s0074-7696(08)62138-5. [DOI] [PubMed] [Google Scholar]
- Luo P., Baldwin R. L. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry. 1997 Jul 8;36(27):8413–8421. doi: 10.1021/bi9707133. [DOI] [PubMed] [Google Scholar]
- Lupas A., Van Dyke M., Stock J. Predicting coiled coils from protein sequences. Science. 1991 May 24;252(5009):1162–1164. doi: 10.1126/science.252.5009.1162. [DOI] [PubMed] [Google Scholar]
- Mandelkow E., Johnson K. A. The structural and mechanochemical cycle of kinesin. Trends Biochem Sci. 1998 Nov;23(11):429–433. doi: 10.1016/s0968-0004(98)01278-x. [DOI] [PubMed] [Google Scholar]
- Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
- Marya P. K., Syed Z., Fraylich P. E., Eagles P. A. Kinesin and tau bind to distinct sites on microtubules. J Cell Sci. 1994 Jan;107(Pt 1):339–344. doi: 10.1242/jcs.107.1.339. [DOI] [PubMed] [Google Scholar]
- Mejillano M. R., Himes R. H. Assembly properties of tubulin after carboxyl group modification. J Biol Chem. 1991 Jan 5;266(1):657–664. [PubMed] [Google Scholar]
- Merutka G., Dyson H. J., Wright P. E. 'Random coil' 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. J Biomol NMR. 1995 Jan;5(1):14–24. doi: 10.1007/BF00227466. [DOI] [PubMed] [Google Scholar]
- Muñoz V., Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Biol. 1994 Jun;1(6):399–409. doi: 10.1038/nsb0694-399. [DOI] [PubMed] [Google Scholar]
- Nelson J. W., Kallenbach N. R. Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol. Proteins. 1986 Nov;1(3):211–217. doi: 10.1002/prot.340010303. [DOI] [PubMed] [Google Scholar]
- Nogales E., Wolf S. G., Downing K. H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature. 1998 Jan 8;391(6663):199–203. doi: 10.1038/34465. [DOI] [PubMed] [Google Scholar]
- Novella I. S., Andreu J. M., Andreu D. Chemically synthesized 182-235 segment of tau protein and analogue peptides are efficient in vitro microtubule assembly inducers of low apparent sequence specificity. FEBS Lett. 1992 Oct 26;311(3):235–240. doi: 10.1016/0014-5793(92)81110-8. [DOI] [PubMed] [Google Scholar]
- O'Brien E. T., Salmon E. D., Erickson H. P. How calcium causes microtubule depolymerization. Cell Motil Cytoskeleton. 1997;36(2):125–135. doi: 10.1002/(SICI)1097-0169(1997)36:2<125::AID-CM3>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
- Ortiz M., Lagos R., Monasterio O. Interaction between the C-terminal peptides of tubulin and tubulin S detected with the fluorescent probe 4',6-diamidino-2-phenylindole. Arch Biochem Biophys. 1993 May 15;303(1):159–164. doi: 10.1006/abbi.1993.1267. [DOI] [PubMed] [Google Scholar]
- Paschal B. M., Obar R. A., Vallee R. B. Interaction of brain cytoplasmic dynein and MAP2 with a common sequence at the C terminus of tubulin. Nature. 1989 Nov 30;342(6249):569–572. doi: 10.1038/342569a0. [DOI] [PubMed] [Google Scholar]
- Perczel A., Park K., Fasman G. D. Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: a practical guide. Anal Biochem. 1992 May 15;203(1):83–93. doi: 10.1016/0003-2697(92)90046-a. [DOI] [PubMed] [Google Scholar]
- Ponstingl H., Little M., Krauhs E., Kempf T. Carboxy-terminal amino acid sequence of alpha-tubulin from porcine brain. Nature. 1979 Nov 22;282(5737):423–425. doi: 10.1038/282423a0. [DOI] [PubMed] [Google Scholar]
- Redeker V., Melki R., Promé D., Le Caer J. P., Rossier J. Structure of tubulin C-terminal domain obtained by subtilisin treatment. The major alpha and beta tubulin isotypes from pig brain are glutamylated. FEBS Lett. 1992 Nov 23;313(2):185–192. doi: 10.1016/0014-5793(92)81441-n. [DOI] [PubMed] [Google Scholar]
- Reed J., Hull W. E., Ponstingl H., Himes R. H. Conformational properties of the beta(400-436) and beta(400-445) C-terminal peptides of porcine brain tubulin. Biochemistry. 1992 Dec 1;31(47):11888–11895. doi: 10.1021/bi00162a030. [DOI] [PubMed] [Google Scholar]
- Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
- Sackett D. L., Bhattacharyya B., Wolff J. Tubulin subunit carboxyl termini determine polymerization efficiency. J Biol Chem. 1985 Jan 10;260(1):43–45. [PubMed] [Google Scholar]
- Serrano L., Avila J., Maccioni R. B. Controlled proteolysis of tubulin by subtilisin: localization of the site for MAP2 interaction. Biochemistry. 1984 Sep 25;23(20):4675–4681. doi: 10.1021/bi00315a024. [DOI] [PubMed] [Google Scholar]
- Serrano L., Valencia A., Caballero R., Avila J. Localization of the high affinity calcium-binding site on tubulin molecule. J Biol Chem. 1986 May 25;261(15):7076–7081. [PubMed] [Google Scholar]
- Solomon F. Binding sites for calcium on tubulin. Biochemistry. 1977 Feb 8;16(3):358–363. doi: 10.1021/bi00622a003. [DOI] [PubMed] [Google Scholar]
- Soto C., Rodríguez P. H., Monasterio O. Calcium and gadolinium ions stimulate the GTPase activity of purified chicken brain tubulin through a conformational change. Biochemistry. 1996 May 21;35(20):6337–6344. doi: 10.1021/bi952320e. [DOI] [PubMed] [Google Scholar]
- Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
- Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valenzuela P., Quiroga M., Zaldivar J., Rutter W. J., Kirschner M. W., Cleveland D. W. Nucleotide and corresponding amino acid sequences encoded by alpha and beta tubulin mRNAs. Nature. 1981 Feb 19;289(5799):650–655. doi: 10.1038/289650a0. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D. Chemical shifts as a tool for structure determination. Methods Enzymol. 1994;239:363–392. doi: 10.1016/s0076-6879(94)39014-2. [DOI] [PubMed] [Google Scholar]
- Wüthrich K., Billeter M., Braun W. Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. J Mol Biol. 1984 Dec 15;180(3):715–740. doi: 10.1016/0022-2836(84)90034-2. [DOI] [PubMed] [Google Scholar]
- Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]
- de Pereda J. M., Andreu J. M. Mapping surface sequences of the tubulin dimer and taxol-induced microtubules with limited proteolysis. Biochemistry. 1996 Nov 12;35(45):14184–14202. doi: 10.1021/bi961356j. [DOI] [PubMed] [Google Scholar]
- de Pereda J. M., Leynadier D., Evangelio J. A., Chacón P., Andreu J. M. Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ. Biochemistry. 1996 Nov 12;35(45):14203–14215. doi: 10.1021/bi961357b. [DOI] [PubMed] [Google Scholar]
- de Pereda J. M., Wallin M., Billger M., Andreu J. M. Comparative study of the colchicine binding site and the assembly of fish and mammalian microtubule proteins. Cell Motil Cytoskeleton. 1995;30(2):153–163. doi: 10.1002/cm.970300207. [DOI] [PubMed] [Google Scholar]
- de la Viña S., Andreu D., Medrano F. J., Nieto J. M., Andreu J. M. Tubulin structure probed with antibodies to synthetic peptides. Mapping of three major types of limited proteolysis fragments. Biochemistry. 1988 Jul 12;27(14):5352–5365. doi: 10.1021/bi00414a060. [DOI] [PubMed] [Google Scholar]