Abstract
Phage-display peptide library analysis of an anti-F actin polyclonal antibody identified 12 amino acid residues of actin that appear, in its X-ray crystal structure, to be grouped together in a surface accessible conformational epitope. Phage epitope mapping was carried out by isolating immune complexes containing members of the J404 nonapeptide phage-display library formed in diluted antiserum and isolated on a protein A affinity matrix. Immunoreactive clones were grown as plaques, replica plated onto nitrocellulose, and labeled with anti-actin immune serum. One hundred and forty-four positively staining clones identified in this way were sequenced. Of these, 54 displayed peptides with sequence similarities. When the most abundantly selected sequence, KQTWQQLWD, was produced as a synthetic peptide and derivatized to ovalbumin, the complex was strongly recognized by the antiserum on Western blots and inhibited the binding of the antibody to immobilized F-actin by 60%. A scrambled version of this sequence WQDK WLQTQ, when coupled to ovalbumin, was not recognized by the antiserum and minimally inhibited binding of antiserum to immobilized F-actin by 10%. KQTWQQLWD contained four residues that corresponded, in frame, to a highly conserved six residue region of the chicken beta-actin sequence 351TFQQMW356 (identical residues are shown in bold). Examination of the rabbit skeletal muscle X-ray crystal structure suggested that within a 15 A radius of W356, nine additional residues were arranged on the actin surface in such a way that they could be mimicked by several of the selected phage sequences with root-mean-square deviation fits of 2.1-2.5 A. We conclude that phage-display analysis can provide information about the relative location of amino acids on the surfaces of proteins using antibody imprints of the protein surface structure.
Full Text
The Full Text of this article is available as a PDF (5.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J. Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution. Science. 1986 Aug 15;233(4765):747–753. doi: 10.1126/science.2426778. [DOI] [PubMed] [Google Scholar]
- Burritt J. B., Bond C. W., Doss K. W., Jesaitis A. J. Filamentous phage display of oligopeptide libraries. Anal Biochem. 1996 Jun 15;238(1):1–13. doi: 10.1006/abio.1996.0241. [DOI] [PubMed] [Google Scholar]
- Burritt J. B., Busse S. C., Gizachew D., Siemsen D. W., Quinn M. T., Bond C. W., Dratz E. A., Jesaitis A. J. Antibody imprint of a membrane protein surface. Phagocyte flavocytochrome b. J Biol Chem. 1998 Sep 18;273(38):24847–24852. doi: 10.1074/jbc.273.38.24847. [DOI] [PubMed] [Google Scholar]
- Burritt J. B., Quinn M. T., Jutila M. A., Bond C. W., Jesaitis A. J. Topological mapping of neutrophil cytochrome b epitopes with phage-display libraries. J Biol Chem. 1995 Jul 14;270(28):16974–16980. doi: 10.1074/jbc.270.28.16974. [DOI] [PubMed] [Google Scholar]
- Chester D. W., Skita V., Young H. S., Mavromoustakos T., Strittmatter P. Bilayer structure and physical dynamics of the cytochrome b5 dimyristoylphosphatidylcholine interaction. Biophys J. 1992 May;61(5):1224–1243. doi: 10.1016/S0006-3495(92)81932-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craig L., Sanschagrin P. C., Rozek A., Lackie S., Kuhn L. A., Scott J. K. The role of structure in antibody cross-reactivity between peptides and folded proteins. J Mol Biol. 1998 Aug 7;281(1):183–201. doi: 10.1006/jmbi.1998.1907. [DOI] [PubMed] [Google Scholar]
- Dandekar T., Argos P. Applying experimental data to protein fold prediction with the genetic algorithm. Protein Eng. 1997 Aug;10(8):877–893. doi: 10.1093/protein/10.8.877. [DOI] [PubMed] [Google Scholar]
- DeLeo F. R., Nauseef W. M., Jesaitis A. J., Burritt J. B., Clark R. A., Quinn M. T. A domain of p47phox that interacts with human neutrophil flavocytochrome b558. J Biol Chem. 1995 Nov 3;270(44):26246–26251. doi: 10.1074/jbc.270.44.26246. [DOI] [PubMed] [Google Scholar]
- DeLeo F. R., Yu L., Burritt J. B., Loetterle L. R., Bond C. W., Jesaitis A. J., Quinn M. T. Mapping sites of interaction of p47-phox and flavocytochrome b with random-sequence peptide phage display libraries. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7110–7114. doi: 10.1073/pnas.92.15.7110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dyson H. J., Rance M., Houghten R. A., Wright P. E., Lerner R. A. Folding of immunogenic peptide fragments of proteins in water solution. II. The nascent helix. J Mol Biol. 1988 May 5;201(1):201–217. doi: 10.1016/0022-2836(88)90447-0. [DOI] [PubMed] [Google Scholar]
- Getzoff E. D., Geysen H. M., Rodda S. J., Alexander H., Tainer J. A., Lerner R. A. Mechanisms of antibody binding to a protein. Science. 1987 Mar 6;235(4793):1191–1196. doi: 10.1126/science.3823879. [DOI] [PubMed] [Google Scholar]
- Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
- Ingraham L. M., Coates T. D., Allen J. M., Higgins C. P., Baehner R. L., Boxer L. A. Metabolic, membrane, and functional responses of human polymorphonuclear leukocytes to platelet-activating factor. Blood. 1982 Jun;59(6):1259–1266. [PubMed] [Google Scholar]
- Jesaitis A. J., Erickson R. W., Klotz K. N., Bommakanti R. K., Siemsen D. W. Functional molecular complexes of human N-formyl chemoattractant receptors and actin. J Immunol. 1993 Nov 15;151(10):5653–5665. [PubMed] [Google Scholar]
- Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
- Luzzago A., Felici F., Tramontano A., Pessi A., Cortese R. Mimicking of discontinuous epitopes by phage-displayed peptides, I. Epitope mapping of human H ferritin using a phage library of constrained peptides. Gene. 1993 Jun 15;128(1):51–57. doi: 10.1016/0378-1119(93)90152-s. [DOI] [PubMed] [Google Scholar]
- Mazzucchelli L., Burritt J. B., Jesaitis A. J., Nusrat A., Liang T. W., Gewirtz A. T., Schnell F. J., Parkos C. A. Cell-specific peptide binding by human neutrophils. Blood. 1999 Mar 1;93(5):1738–1748. [PubMed] [Google Scholar]
- Pardee J. D., Spudich J. A. Purification of muscle actin. Methods Enzymol. 1982;85(Pt B):164–181. doi: 10.1016/0076-6879(82)85020-9. [DOI] [PubMed] [Google Scholar]
- Pasqualini R., Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature. 1996 Mar 28;380(6572):364–366. doi: 10.1038/380364a0. [DOI] [PubMed] [Google Scholar]
- Scott J. K., Smith G. P. Searching for peptide ligands with an epitope library. Science. 1990 Jul 27;249(4967):386–390. doi: 10.1126/science.1696028. [DOI] [PubMed] [Google Scholar]
- Sheriff S., Silverton E. W., Padlan E. A., Cohen G. H., Smith-Gill S. J., Finzel B. C., Davies D. R. Three-dimensional structure of an antibody-antigen complex. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8075–8079. doi: 10.1073/pnas.84.22.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tulip W. R., Varghese J. N., Laver W. G., Webster R. G., Colman P. M. Refined crystal structure of the influenza virus N9 neuraminidase-NC41 Fab complex. J Mol Biol. 1992 Sep 5;227(1):122–148. doi: 10.1016/0022-2836(92)90687-f. [DOI] [PubMed] [Google Scholar]
- Wilson I. A., Stanfield R. L. Antibody-antigen interactions: new structures and new conformational changes. Curr Opin Struct Biol. 1994 Dec;4(6):857–867. doi: 10.1016/0959-440x(94)90267-4. [DOI] [PubMed] [Google Scholar]