Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Apr;8(4):854–865. doi: 10.1110/ps.8.4.854

De novo design of a monomeric three-stranded antiparallel beta-sheet.

E de Alba 1, J Santoro 1, M Rico 1, M A Jiménez 1
PMCID: PMC2144301  PMID: 10211831

Abstract

Here we describe the NMR conformational study of a 20-residue linear peptide designed to fold into a monomeric three-stranded antiparallel beta-sheet in aqueous solution. Experimental and statistical data on amino acid beta-turn and beta-sheet propensities, cross-strand side-chain interactions, solubility criteria, and our previous experience with beta-hairpins were considered for a rational selection of the peptide sequence. Sedimentation equilibrium measurements and NMR dilution experiments provide evidence that the peptide is monomeric. Analysis of 1H and 13C-NMR parameters of the peptide, in particular NOEs and chemical shifts, and comparison with data obtained for two 12-residue peptides encompassing the N- and C-segments of the designed sequence indicates that the 20-residue peptide folds into the expected conformation. Assuming a two-state model, the exchange kinetics between the beta-sheet and the unfolded peptide molecules is in a suitable range to estimate the folding rate on the basis of the NMR linewidths of several resonances. The time constant for the coil-beta-sheet transition is of the order of several microseconds in the designed peptide. Future designs based on this peptide system are expected to contribute greatly to our knowledge of the many factors involved in beta-sheet formation and stability.

Full Text

The Full Text of this article is available as a PDF (538.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auer H. E., Miller-Auer H. Dynamics of the disordered-beta transition in poly(L-tyrosine) determined by stopped-flow spectrometry. Biopolymers. 1986 Sep;25(9):1607–1613. doi: 10.1002/bip.360250904. [DOI] [PubMed] [Google Scholar]
  2. Baldwin R. L. Alpha-helix formation by peptides of defined sequence. Biophys Chem. 1995 Jun-Jul;55(1-2):127–135. doi: 10.1016/0301-4622(94)00146-b. [DOI] [PubMed] [Google Scholar]
  3. Ballew R. M., Sabelko J., Gruebele M. Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5759–5764. doi: 10.1073/pnas.93.12.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blanco F. J., Jiménez M. A., Pineda A., Rico M., Santoro J., Nieto J. L. NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Biochemistry. 1994 May 17;33(19):6004–6014. doi: 10.1021/bi00185a041. [DOI] [PubMed] [Google Scholar]
  5. Blanco F., Ramírez-Alvarado M., Serrano L. Formation and stability of beta-hairpin structures in polypeptides. Curr Opin Struct Biol. 1998 Feb;8(1):107–111. doi: 10.1016/s0959-440x(98)80017-1. [DOI] [PubMed] [Google Scholar]
  6. Buckley P., Edison A. S., Kemple M. D., Prendergast F. G. 13C alpha-NMR assignments of melittin in methanol and chemical shift correlations with secondary structure. J Biomol NMR. 1993 Nov;3(6):639–652. doi: 10.1007/BF00198369. [DOI] [PubMed] [Google Scholar]
  7. Chothia C. Conformation of twisted beta-pleated sheets in proteins. J Mol Biol. 1973 Apr 5;75(2):295–302. doi: 10.1016/0022-2836(73)90022-3. [DOI] [PubMed] [Google Scholar]
  8. Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
  9. Cox J. P., Evans P. A., Packman L. C., Williams D. H., Woolfson D. N. Dissecting the structure of a partially folded protein. Circular dichroism and nuclear magnetic resonance studies of peptides from ubiquitin. J Mol Biol. 1993 Nov 20;234(2):483–492. doi: 10.1006/jmbi.1993.1600. [DOI] [PubMed] [Google Scholar]
  10. Eaton W. A., Muñoz V., Thompson P. A., Chan C. K., Hofrichter J. Submillisecond kinetics of protein folding. Curr Opin Struct Biol. 1997 Feb;7(1):10–14. doi: 10.1016/s0959-440x(97)80003-6. [DOI] [PubMed] [Google Scholar]
  11. Finkelstein A. V. Rate of beta-structure formation in polypeptides. Proteins. 1991;9(1):23–27. doi: 10.1002/prot.340090104. [DOI] [PubMed] [Google Scholar]
  12. Gilmanshin R., Williams S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3709–3713. doi: 10.1073/pnas.94.8.3709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gronenborn A. M., Clore G. M. Identification of N-terminal helix capping boxes by means of 13C chemical shifts. J Biomol NMR. 1994 May;4(3):455–458. doi: 10.1007/BF00179351. [DOI] [PubMed] [Google Scholar]
  14. Guerois R., Cordier-Ochsenbein F., Baleux F., Huynh-Dinh T., Neumann J. M., Sanson A. A conformational equilibrium in a protein fragment caused by two consecutive capping boxes: 1H-, 13C-NMR, and mutational analysis. Protein Sci. 1998 Jul;7(7):1506–1515. doi: 10.1002/pro.5560070703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Güntert P., Braun W., Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991 Feb 5;217(3):517–530. doi: 10.1016/0022-2836(91)90754-t. [DOI] [PubMed] [Google Scholar]
  16. Hutchinson E. G., Thornton J. M. A revised set of potentials for beta-turn formation in proteins. Protein Sci. 1994 Dec;3(12):2207–2216. doi: 10.1002/pro.5560031206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ilyina E., Roongta V., Mayo K. H. NMR structure of a de novo designed, peptide 33mer with two distinct, compact beta-sheet folds. Biochemistry. 1997 Apr 29;36(17):5245–5250. doi: 10.1021/bi963064o. [DOI] [PubMed] [Google Scholar]
  18. Kim C. A., Berg J. M. Thermodynamic beta-sheet propensities measured using a zinc-finger host peptide. Nature. 1993 Mar 18;362(6417):267–270. doi: 10.1038/362267a0. [DOI] [PubMed] [Google Scholar]
  19. Kortemme T., Ramírez-Alvarado M., Serrano L. Design of a 20-amino acid, three-stranded beta-sheet protein. Science. 1998 Jul 10;281(5374):253–256. doi: 10.1126/science.281.5374.253. [DOI] [PubMed] [Google Scholar]
  20. Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
  21. Lyu P. C., Wemmer D. E., Zhou H. X., Pinker R. J., Kallenbach N. R. Capping interactions in isolated alpha helices: position-dependent substitution effects and structure of a serine-capped peptide helix. Biochemistry. 1993 Jan 19;32(2):421–425. doi: 10.1021/bi00053a006. [DOI] [PubMed] [Google Scholar]
  22. Martin F., Toniatti C., Salvati A. L., Ciliberto G., Cortese R., Sollazzo M. Coupling protein design and in vitro selection strategies: improving specificity and affinity of a designed beta-protein IL-6 antagonist. J Mol Biol. 1996 Jan 12;255(1):86–97. doi: 10.1006/jmbi.1996.0008. [DOI] [PubMed] [Google Scholar]
  23. Mattos C., Petsko G. A., Karplus M. Analysis of two-residue turns in proteins. J Mol Biol. 1994 May 20;238(5):733–747. doi: 10.1006/jmbi.1994.1332. [DOI] [PubMed] [Google Scholar]
  24. Minor D. L., Jr, Kim P. S. Context is a major determinant of beta-sheet propensity. Nature. 1994 Sep 15;371(6494):264–267. doi: 10.1038/371264a0. [DOI] [PubMed] [Google Scholar]
  25. Minor D. L., Jr, Kim P. S. Measurement of the beta-sheet-forming propensities of amino acids. Nature. 1994 Feb 17;367(6464):660–663. doi: 10.1038/367660a0. [DOI] [PubMed] [Google Scholar]
  26. Muñoz V., Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Biol. 1994 Jun;1(6):399–409. doi: 10.1038/nsb0694-399. [DOI] [PubMed] [Google Scholar]
  27. Muñoz V., Serrano L. Intrinsic secondary structure propensities of the amino acids, using statistical phi-psi matrices: comparison with experimental scales. Proteins. 1994 Dec;20(4):301–311. doi: 10.1002/prot.340200403. [DOI] [PubMed] [Google Scholar]
  28. Muñoz V., Thompson P. A., Hofrichter J., Eaton W. A. Folding dynamics and mechanism of beta-hairpin formation. Nature. 1997 Nov 13;390(6656):196–199. doi: 10.1038/36626. [DOI] [PubMed] [Google Scholar]
  29. Ramírez-Alvarado M., Blanco F. J., Niemann H., Serrano L. Role of beta-turn residues in beta-hairpin formation and stability in designed peptides. J Mol Biol. 1997 Nov 7;273(4):898–912. doi: 10.1006/jmbi.1997.1347. [DOI] [PubMed] [Google Scholar]
  30. Ramírez-Alvarado M., Blanco F. J., Serrano L. De novo design and structural analysis of a model beta-hairpin peptide system. Nat Struct Biol. 1996 Jul;3(7):604–612. doi: 10.1038/nsb0796-604. [DOI] [PubMed] [Google Scholar]
  31. Scholtz J. M., Baldwin R. L. The mechanism of alpha-helix formation by peptides. Annu Rev Biophys Biomol Struct. 1992;21:95–118. doi: 10.1146/annurev.bb.21.060192.000523. [DOI] [PubMed] [Google Scholar]
  32. Searle M. S., Zerella R., Williams D. H., Packman L. C. Native-like beta-hairpin structure in an isolated fragment from ferredoxin: NMR and CD studies of solvent effects on the N-terminal 20 residues. Protein Eng. 1996 Jul;9(7):559–565. doi: 10.1093/protein/9.7.559. [DOI] [PubMed] [Google Scholar]
  33. Sibanda B. L., Thornton J. M. Beta-hairpin families in globular proteins. Nature. 1985 Jul 11;316(6024):170–174. doi: 10.1038/316170a0. [DOI] [PubMed] [Google Scholar]
  34. Smith C. K., Withka J. M., Regan L. A thermodynamic scale for the beta-sheet forming tendencies of the amino acids. Biochemistry. 1994 May 10;33(18):5510–5517. doi: 10.1021/bi00184a020. [DOI] [PubMed] [Google Scholar]
  35. Swindells M. B., MacArthur M. W., Thornton J. M. Intrinsic phi, psi propensities of amino acids, derived from the coil regions of known structures. Nat Struct Biol. 1995 Jul;2(7):596–603. doi: 10.1038/nsb0795-596. [DOI] [PubMed] [Google Scholar]
  36. Varley P., Gronenborn A. M., Christensen H., Wingfield P. T., Pain R. H., Clore G. M. Kinetics of folding of the all-beta sheet protein interleukin-1 beta. Science. 1993 May 21;260(5111):1110–1113. doi: 10.1126/science.8493553. [DOI] [PubMed] [Google Scholar]
  37. Williams S., Causgrove T. P., Gilmanshin R., Fang K. S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry. 1996 Jan 23;35(3):691–697. doi: 10.1021/bi952217p. [DOI] [PubMed] [Google Scholar]
  38. Wishart D. S., Bigam C. G., Holm A., Hodges R. S., Sykes B. D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67–81. doi: 10.1007/BF00227471. [DOI] [PubMed] [Google Scholar]
  39. Wouters M. A., Curmi P. M. An analysis of side chain interactions and pair correlations within antiparallel beta-sheets: the differences between backbone hydrogen-bonded and non-hydrogen-bonded residue pairs. Proteins. 1995 Jun;22(2):119–131. doi: 10.1002/prot.340220205. [DOI] [PubMed] [Google Scholar]
  40. Wright P. E., Dyson H. J., Lerner R. A. Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry. 1988 Sep 20;27(19):7167–7175. doi: 10.1021/bi00419a001. [DOI] [PubMed] [Google Scholar]
  41. Wüthrich K., Billeter M., Braun W. Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. J Mol Biol. 1984 Dec 15;180(3):715–740. doi: 10.1016/0022-2836(84)90034-2. [DOI] [PubMed] [Google Scholar]
  42. Yan Y., Erickson B. W. Engineering of betabellin 14D: disulfide-induced folding of a beta-sheet protein. Protein Sci. 1994 Jul;3(7):1069–1073. doi: 10.1002/pro.5560030709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yao J., Dyson H. J., Wright P. E. Chemical shift dispersion and secondary structure prediction in unfolded and partly folded proteins. FEBS Lett. 1997 Dec 15;419(2-3):285–289. doi: 10.1016/s0014-5793(97)01474-9. [DOI] [PubMed] [Google Scholar]
  44. Yapa K., Weaver D. L., Karplus M. Beta-sheet coil transitions in a simple polypeptide model. Proteins. 1992 Mar;12(3):237–265. doi: 10.1002/prot.340120304. [DOI] [PubMed] [Google Scholar]
  45. Zhou N. E., Kay C. M., Sykes B. D., Hodges R. S. A single-stranded amphipathic alpha-helix in aqueous solution: design, structural characterization, and its application for determining alpha-helical propensities of amino acids. Biochemistry. 1993 Jun 22;32(24):6190–6197. doi: 10.1021/bi00075a011. [DOI] [PubMed] [Google Scholar]
  46. de Alba E., Blanco F. J., Jiménez M. A., Rico M., Nieto J. L. Interactions responsible for the pH dependence of the beta-hairpin conformational population formed by a designed linear peptide. Eur J Biochem. 1995 Oct 1;233(1):283–292. doi: 10.1111/j.1432-1033.1995.283_1.x. [DOI] [PubMed] [Google Scholar]
  47. de Alba E., Jiménez M. A., Rico M., Nieto J. L. Conformational investigation of designed short linear peptides able to fold into beta-hairpin structures in aqueous solution. Fold Des. 1996;1(2):133–144. doi: 10.1016/s1359-0278(96)00022-3. [DOI] [PubMed] [Google Scholar]
  48. de Alba E., Rico M., Jiménez M. A. Cross-strand side-chain interactions versus turn conformation in beta-hairpins. Protein Sci. 1997 Dec;6(12):2548–2560. doi: 10.1002/pro.5560061207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. de Dios A. C., Pearson J. G., Oldfield E. Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science. 1993 Jun 4;260(5113):1491–1496. doi: 10.1126/science.8502992. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES