Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Apr;8(4):905–912. doi: 10.1110/ps.8.4.905

Nucleolar protein B23 has molecular chaperone activities.

A Szebeni 1, M O Olson 1
PMCID: PMC2144306  PMID: 10211837

Abstract

Protein B23 is an abundant, multifunctional nucleolar phosphoprotein whose activities are proposed to play a role in ribosome assembly. Szebeni et al. (1997) showed stimulation of nuclear import in vitro by protein B23 and suggested that this effect was due to a molecular chaperone-like activity. Protein B23 was tested for chaperone activities using several protein substrates. The temperature-dependent and -independent aggregation of the HIV-1 Rev protein was measured using a zero angle light scattering (turbidity) assay. Protein B23 inhibited the aggregation of the Rev protein, with the amount of inhibition proportional to the concentration of B23 added. This activity was saturable with nearly complete inhibition when the molar ratio of B23:Rev was slightly above one. Protein B23 also protected liver alcohol dehydrogenase (LADH), carboxypeptidase A, citrate synthase, and rhodanese from aggregation during thermal denaturation and preserved the enzyme activity of LADH under these conditions. In addition, protein B23 was able to promote the restoration of activity of LADH previously denatured with guanidine-HCl. Protein B23 preferentially bound denatured substrates and exposed hydrophobic regions when complexed with denatured proteins. Thus, by several criteria, protein B23 behaves like a molecular chaperone; these activities may be related to its role in ribosome biogenesis.

Full Text

The Full Text of this article is available as a PDF (283.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borer R. A., Lehner C. F., Eppenberger H. M., Nigg E. A. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 1989 Feb 10;56(3):379–390. doi: 10.1016/0092-8674(89)90241-9. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Buchner J., Grallert H., Jakob U. Analysis of chaperone function using citrate synthase as nonnative substrate protein. Methods Enzymol. 1998;290:323–338. doi: 10.1016/s0076-6879(98)90029-5. [DOI] [PubMed] [Google Scholar]
  4. Buchner J. Supervising the fold: functional principles of molecular chaperones. FASEB J. 1996 Jan;10(1):10–19. [PubMed] [Google Scholar]
  5. Campbell K. S., Mullane K. P., Aksoy I. A., Stubdal H., Zalvide J., Pipas J. M., Silver P. A., Roberts T. M., Schaffhausen B. S., DeCaprio J. A. DnaJ/hsp40 chaperone domain of SV40 large T antigen promotes efficient viral DNA replication. Genes Dev. 1997 May 1;11(9):1098–1110. doi: 10.1101/gad.11.9.1098. [DOI] [PubMed] [Google Scholar]
  6. Chan W. Y., Liu Q. R., Borjigin J., Busch H., Rennert O. M., Tease L. A., Chan P. K. Characterization of the cDNA encoding human nucleophosmin and studies of its role in normal and abnormal growth. Biochemistry. 1989 Feb 7;28(3):1033–1039. doi: 10.1021/bi00429a017. [DOI] [PubMed] [Google Scholar]
  7. Chang J. H., Lin J. Y., Wu M. H., Yung B. Y. Evidence for the ability of nucleophosmin/B23 to bind ATP. Biochem J. 1998 Feb 1;329(Pt 3):539–544. doi: 10.1042/bj3290539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chang J. H., Olson M. O. Structure of the gene for rat nucleolar protein B23. J Biol Chem. 1990 Oct 25;265(30):18227–18233. [PubMed] [Google Scholar]
  9. Eichler D. C., Craig N. Processing of eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 1994;49:197–239. doi: 10.1016/s0079-6603(08)60051-3. [DOI] [PubMed] [Google Scholar]
  10. Ellis R. J. Molecular chaperones: avoiding the crowd. Curr Biol. 1997 Sep 1;7(9):R531–R533. doi: 10.1016/s0960-9822(06)00273-9. [DOI] [PubMed] [Google Scholar]
  11. Fankhauser C., Izaurralde E., Adachi Y., Wingfield P., Laemmli U. K. Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol. 1991 May;11(5):2567–2575. doi: 10.1128/mcb.11.5.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fedorov A. N., Baldwin T. O. Cotranslational protein folding. J Biol Chem. 1997 Dec 26;272(52):32715–32718. doi: 10.1074/jbc.272.52.32715. [DOI] [PubMed] [Google Scholar]
  13. Feuerstein N., Mond J. J. Identification of a prominent nuclear protein associated with proliferation of normal and malignant B cells. J Immunol. 1987 Sep 15;139(6):1818–1822. [PubMed] [Google Scholar]
  14. Goldfarb D. S. Karyophilic peptides: applications to the study of nuclear transport. Cell Biol Int Rep. 1988 Sep;12(9):809–832. doi: 10.1016/0309-1651(88)90090-2. [DOI] [PubMed] [Google Scholar]
  15. Guagliardi A., Cerchia L., Rossi M. Prevention of in vitro protein thermal aggregation by the Sulfolobus solfataricus chaperonin. Evidence for nonequivalent binding surfaces on the chaperonin molecule. J Biol Chem. 1995 Nov 24;270(47):28126–28132. doi: 10.1074/jbc.270.47.28126. [DOI] [PubMed] [Google Scholar]
  16. Hendrick J. P., Hartl F. U. The role of molecular chaperones in protein folding. FASEB J. 1995 Dec;9(15):1559–1569. doi: 10.1096/fasebj.9.15.8529835. [DOI] [PubMed] [Google Scholar]
  17. Jakob U., Buchner J. Assisting spontaneity: the role of Hsp90 and small Hsps as molecular chaperones. Trends Biochem Sci. 1994 May;19(5):205–211. doi: 10.1016/0968-0004(94)90023-x. [DOI] [PubMed] [Google Scholar]
  18. Jakob U., Gaestel M., Engel K., Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993 Jan 25;268(3):1517–1520. [PubMed] [Google Scholar]
  19. Li Y. P., Busch R. K., Valdez B. C., Busch H. C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. Eur J Biochem. 1996 Apr 1;237(1):153–158. doi: 10.1111/j.1432-1033.1996.0153n.x. [DOI] [PubMed] [Google Scholar]
  20. Martin J., Langer T., Boteva R., Schramel A., Horwich A. L., Hartl F. U. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature. 1991 Jul 4;352(6330):36–42. doi: 10.1038/352036a0. [DOI] [PubMed] [Google Scholar]
  21. Mock D. M., Lankford G., Horowitz P. A study of the interaction of avidin with 2-anilinonaphthalene-6-sulfonic acid as a probe of the biotin binding site. Biochim Biophys Acta. 1988 Aug 31;956(1):23–29. doi: 10.1016/0167-4838(88)90293-2. [DOI] [PubMed] [Google Scholar]
  22. Moss T., Stefanovsky V. Y. Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. Prog Nucleic Acid Res Mol Biol. 1995;50:25–66. doi: 10.1016/s0079-6603(08)60810-7. [DOI] [PubMed] [Google Scholar]
  23. Muchowski P. J., Bassuk J. A., Lubsen N. H., Clark J. I. Human alphaB-crystallin. Small heat shock protein and molecular chaperone. J Biol Chem. 1997 Jan 24;272(4):2578–2582. doi: 10.1074/jbc.272.4.2578. [DOI] [PubMed] [Google Scholar]
  24. Norcum M. T. Novel isolation method and structural stability of a eukaryotic chaperonin: the TCP-1 ring complex from rabbit reticulocytes. Protein Sci. 1996 Jul;5(7):1366–1375. doi: 10.1002/pro.5560050715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Olson M. O., Wallace M. O., Herrera A. H., Marshall-Carlson L., Hunt R. C. Preribosomal ribonucleoprotein particles are a major component of a nucleolar matrix fraction. Biochemistry. 1986 Jan 28;25(2):484–491. doi: 10.1021/bi00350a031. [DOI] [PubMed] [Google Scholar]
  26. Ruddon R. W., Bedows E. Assisted protein folding. J Biol Chem. 1997 Feb 7;272(6):3125–3128. doi: 10.1074/jbc.272.6.3125. [DOI] [PubMed] [Google Scholar]
  27. Schmidt-Zachmann M. S., Hügle-Dörr B., Franke W. W. A constitutive nucleolar protein identified as a member of the nucleoplasmin family. EMBO J. 1987 Jul;6(7):1881–1890. doi: 10.1002/j.1460-2075.1987.tb02447.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shan X., Xue Z., Mélèse T. Yeast NPI46 encodes a novel prolyl cis-trans isomerase that is located in the nucleolus. J Cell Biol. 1994 Aug;126(4):853–862. doi: 10.1083/jcb.126.4.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Szebeni A., Herrera J. E., Olson M. O. Interaction of nucleolar protein B23 with peptides related to nuclear localization signals. Biochemistry. 1995 Jun 27;34(25):8037–8042. doi: 10.1021/bi00025a009. [DOI] [PubMed] [Google Scholar]
  30. Szebeni A., Mehrotra B., Baumann A., Adam S. A., Wingfield P. T., Olson M. O. Nucleolar protein B23 stimulates nuclear import of the HIV-1 Rev protein and NLS-conjugated albumin. Biochemistry. 1997 Apr 1;36(13):3941–3949. doi: 10.1021/bi9627931. [DOI] [PubMed] [Google Scholar]
  31. Taguchi H., Yoshida M. Chaperonin from thermophile Thermus thermophilus. Methods Enzymol. 1998;290:169–180. doi: 10.1016/s0076-6879(98)90017-9. [DOI] [PubMed] [Google Scholar]
  32. Theopold U., Dal Zotto L., Hultmark D. FKBP39, a Drosophila member of a family of proteins that bind the immunosuppressive drug FK506. Gene. 1995 Apr 24;156(2):247–251. doi: 10.1016/0378-1119(95)00019-3. [DOI] [PubMed] [Google Scholar]
  33. Umekawa H., Chang J. H., Correia J. J., Wang D., Wingfield P. T., Olson M. O. Nucleolar protein B23: bacterial expression, purification, oligomerization and secondary structures of two isoforms. Cell Mol Biol Res. 1993;39(7):635–645. [PubMed] [Google Scholar]
  34. Valdez B. C., Perlaky L., Henning D., Saijo Y., Chan P. K., Busch H. Identification of the nuclear and nucleolar localization signals of the protein p120. Interaction with translocation protein B23. J Biol Chem. 1994 Sep 23;269(38):23776–23783. [PubMed] [Google Scholar]
  35. Warner J. R. The nucleolus and ribosome formation. Curr Opin Cell Biol. 1990 Jun;2(3):521–527. doi: 10.1016/0955-0674(90)90137-4. [DOI] [PubMed] [Google Scholar]
  36. Welch W. J., Feramisco J. R. Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem. 1984 Apr 10;259(7):4501–4513. [PubMed] [Google Scholar]
  37. Wiech H., Buchner J., Zimmermann R., Jakob U. Hsp90 chaperones protein folding in vitro. Nature. 1992 Jul 9;358(6382):169–170. doi: 10.1038/358169a0. [DOI] [PubMed] [Google Scholar]
  38. Wingfield P. T., Stahl S. J., Payton M. A., Venkatesan S., Misra M., Steven A. C. HIV-1 Rev expressed in recombinant Escherichia coli: purification, polymerization, and conformational properties. Biochemistry. 1991 Jul 30;30(30):7527–7534. doi: 10.1021/bi00244a023. [DOI] [PubMed] [Google Scholar]
  39. Zimmerman S. B., Minton A. P. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct. 1993;22:27–65. doi: 10.1146/annurev.bb.22.060193.000331. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES