Abstract
The reoccurrence of water molecules in crystal structures of RNase T1 was investigated. Five waters were found to be invariant in RNase T1 as well as in six other related fungal RNases. The structural, dynamical, and functional characteristics of one of these conserved hydration sites (WAT1) were analyzed by protein engineering, X-ray crystallography, and (17)O and 2H nuclear magnetic relaxation dispersion (NMRD). The position of WAT1 and its surrounding hydrogen bond network are unaffected by deletions of two neighboring side chains. In the mutant Thr93Gln, the Gln93N epsilon2 nitrogen replaces WAT1 and participates in a similar hydrogen bond network involving Cys6, Asn9, Asp76, and Thr91. The ability of WAT1 to form four hydrogen bonds may explain why evolution has preserved a water molecule, rather than a side-chain atom, at the center of this intricate hydrogen bond network. Comparison of the (17)O NMRD profiles from wild-type and Thr93Gln RNase T1 yield a mean residence time of 7 ns at 27 degrees C and an orientational order parameter of 0.45. The effects of mutations around WAT1 on the kinetic parameters of RNase T1 are small but significant and probably relate to the dynamics of the active site.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Chen B., Przybyla A. E. An efficient site-directed mutagenesis method based on PCR. Biotechniques. 1994 Oct;17(4):657–659. [PubMed] [Google Scholar]
- De Vos S., Doumen J., Langhorst U., Steyaert J. Dissecting histidine interactions of ribonuclease T1 with asparagine and glutamine replacements: analysis of double mutant cycles at one position. J Mol Biol. 1998 Jan 30;275(4):651–661. doi: 10.1006/jmbi.1997.1480. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Halle B. Hydrogen exchange and protein hydration: the deuteron spin relaxation dispersions of bovine pancreatic trypsin inhibitor and ubiquitin. J Mol Biol. 1995 Feb 3;245(5):698–709. doi: 10.1006/jmbi.1994.0056. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Halle B. Protein hydration dynamics in aqueous solution. Faraday Discuss. 1996;(103):227–244. doi: 10.1039/fd9960300227. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Halle B. Protein hydration dynamics in aqueous solution: a comparison of bovine pancreatic trypsin inhibitor and ubiquitin by oxygen-17 spin relaxation dispersion. J Mol Biol. 1995 Feb 3;245(5):682–697. doi: 10.1006/jmbi.1994.0055. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Halle B. Thermal denaturation of ribonuclease A characterized by water 17O and 2H magnetic relaxation dispersion. Biochemistry. 1998 Jun 30;37(26):9595–9604. doi: 10.1021/bi980442b. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Peters J., Hörlein H. D., Halle B. Using buried water molecules to explore the energy landscape of proteins. Nat Struct Biol. 1996 Jun;3(6):505–509. doi: 10.1038/nsb0696-505. [DOI] [PubMed] [Google Scholar]
- Esnouf R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph Model. 1997 Apr;15(2):132-4, 112-3. doi: 10.1016/S1093-3263(97)00021-1. [DOI] [PubMed] [Google Scholar]
- Koellner G., Choe H. W., Heinemann U., Grunert H. P., Zouni A., Hahn U., Saenger W. His92Ala mutation in ribonuclease T1 induces segmental flexibility. An X-ray study. J Mol Biol. 1992 Apr 5;224(3):701–713. doi: 10.1016/0022-2836(92)90554-w. [DOI] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Malin R., Zielenkiewicz P., Saenger W. Structurally conserved water molecules in ribonuclease T1. J Biol Chem. 1991 Mar 15;266(8):4848–4852. [PubMed] [Google Scholar]
- Martinez-Oyanedel J., Choe H. W., Heinemann U., Saenger W. Ribonuclease T1 with free recognition and catalytic site: crystal structure analysis at 1.5 A resolution. J Mol Biol. 1991 Nov 20;222(2):335–352. doi: 10.1016/0022-2836(91)90215-r. [DOI] [PubMed] [Google Scholar]
- Mayr L. M., Schmid F. X. A purification method for labile variants of ribonuclease T1. Protein Expr Purif. 1993 Feb;4(1):52–58. doi: 10.1006/prep.1993.1008. [DOI] [PubMed] [Google Scholar]
- Meyer E. Internal water molecules and H-bonding in biological macromolecules: a review of structural features with functional implications. Protein Sci. 1992 Dec;1(12):1543–1562. doi: 10.1002/pro.5560011203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osterman H. L., Walz F. G., Jr Subsites and catalytic mechanism of ribonuclease T1: kinetic studies using GpA, GpC, GpG, and GpU as substrates. Biochemistry. 1978 Oct 3;17(20):4124–4130. doi: 10.1021/bi00613a003. [DOI] [PubMed] [Google Scholar]
- Pfeiffer S., Spitzner N., Löhr F., Rüterjans H. Hydration water molecules of nucleotide-free RNase T1 studied by NMR spectroscopy in solution. J Biomol NMR. 1998 Jan;11(1):1–15. doi: 10.1023/a:1008281208888. [DOI] [PubMed] [Google Scholar]
- Shirley B. A., Laurents D. V. Purification of recombinant ribonuclease T1 expressed in Escherichia coli. J Biochem Biophys Methods. 1990 Mar;20(3):181–188. doi: 10.1016/0165-022x(90)90076-o. [DOI] [PubMed] [Google Scholar]
- Steyaert J., Haikal A. F., Wyns L. Investigation of the functional interplay between the primary site and the subsite of RNase T1: kinetic analysis of single and multiple mutants for modified substrates. Proteins. 1994 Apr;18(4):318–323. doi: 10.1002/prot.340180403. [DOI] [PubMed] [Google Scholar]
- Steyaert J., Haikal A. F., Wyns L., Stanssens P. Subsite interactions of ribonuclease T1: Asn36 and Asn98 accelerate GpN transesterification through interactions with the leaving nucleoside N. Biochemistry. 1991 Sep 3;30(35):8666–8670. doi: 10.1021/bi00099a025. [DOI] [PubMed] [Google Scholar]
- Steyaert J., Hallenga K., Wyns L., Stanssens P. Histidine-40 of ribonuclease T1 acts as base catalyst when the true catalytic base, glutamic acid-58, is replaced by alanine. Biochemistry. 1990 Sep 25;29(38):9064–9072. doi: 10.1021/bi00490a025. [DOI] [PubMed] [Google Scholar]
- Zabinski M., Walz F. G., Jr Subsites and catalytic mechanism of ribonuclease T: kinetic studies using GpC and GpU as substrates. Arch Biochem Biophys. 1976 Aug;175(2):558–564. doi: 10.1016/0003-9861(76)90545-2. [DOI] [PubMed] [Google Scholar]
- Zegers I., Haikal A. F., Palmer R., Wyns L. Crystal structure of RNase T1 with 3'-guanylic acid and guanosine. J Biol Chem. 1994 Jan 7;269(1):127–133. [PubMed] [Google Scholar]