Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Apr;8(4):934–940. doi: 10.1110/ps.8.4.934

Carbamate kinase: New structural machinery for making carbamoyl phosphate, the common precursor of pyrimidines and arginine.

A Marina 1, P M Alzari 1, J Bravo 1, M Uriarte 1, B Barcelona 1, I Fita 1, V Rubio 1
PMCID: PMC2144312  PMID: 10211841

Abstract

The enzymes carbamoyl phosphate synthetase (CPS) and carbamate kinase (CK) make carbamoyl phosphate in the same way: by ATP-phosphorylation of carbamate. The carbamate used by CK is made chemically, whereas CPS itself synthesizes its own carbamate in a process involving the phosphorylation of bicarbonate. Bicarbonate and carbamate are analogs and the phosphorylations are carried out by homologous 40 kDa regions of the 120 kDa CPS polypeptide. CK can also phosphorylate bicarbonate and is a homodimer of a 33 kDa subunit that was believed to resemble the 40 kDa regions of CPS. Such belief is disproven now by the CK structure reported here. The structure does not conform to the biotin carboxylase fold found in the 40 kDa regions of CPS, and presents a new type of fold possibly shared by homologous acylphosphate-making enzymes. A molecular 16-stranded open beta-sheet surrounded by alpha-helices is the hallmark of the CK dimer. Each subunit also contains two smaller sheets and a large crevice found at the location expected for the active center. Intersubunit interactions are very large and involve a central hydrophobic patch and more hydrophilic peripheral contacts. The crevice holds a sulfate that may occupy the site of an ATP phosphate, and is lined by conserved residues. Site-directed mutations tested at two of these residues inactivate the enzyme. These findings support active site location in the crevice. The orientation of the crevices in the dimer precludes their physical cooperation in the catalytic process. Such cooperation is not needed in the CK reaction but is a requirement of the mechanism of CPSs.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexeev D., Baxter R. L., Sawyer L. Mechanistic implications and family relationships from the structure of dethiobiotin synthetase. Structure. 1994 Nov 15;2(11):1061–1072. doi: 10.1016/s0969-2126(94)00109-x. [DOI] [PubMed] [Google Scholar]
  2. Artymiuk P. J., Poirrette A. R., Rice D. W., Willett P. Biotin carboxylase comes into the fold. Nat Struct Biol. 1996 Feb;3(2):128–132. doi: 10.1038/nsb0296-128. [DOI] [PubMed] [Google Scholar]
  3. Barettino D., Feigenbutz M., Valcárcel R., Stunnenberg H. G. Improved method for PCR-mediated site-directed mutagenesis. Nucleic Acids Res. 1994 Feb 11;22(3):541–542. doi: 10.1093/nar/22.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bishop S. H., Grisolia S. Crystalline carbamate kinase. Biochim Biophys Acta. 1966 Apr 12;118(1):211–215. doi: 10.1016/s0926-6593(66)80163-7. [DOI] [PubMed] [Google Scholar]
  5. Brändeén C. I. Relation between structure and function of alpha/beta-proteins. Q Rev Biophys. 1980 Aug;13(3):317–338. doi: 10.1017/s0033583500001712. [DOI] [PubMed] [Google Scholar]
  6. Budisa N., Steipe B., Demange P., Eckerskorn C., Kellermann J., Huber R. High-level biosynthetic substitution of methionine in proteins by its analogs 2-aminohexanoic acid, selenomethionine, telluromethionine and ethionine in Escherichia coli. Eur J Biochem. 1995 Jun 1;230(2):788–796. doi: 10.1111/j.1432-1033.1995.tb20622.x. [DOI] [PubMed] [Google Scholar]
  7. Climent I., Rubio V. ATPase activity of biotin carboxylase provides evidence for initial activation of HCO3- by ATP in the carboxylation of biotin. Arch Biochem Biophys. 1986 Dec;251(2):465–470. doi: 10.1016/0003-9861(86)90353-x. [DOI] [PubMed] [Google Scholar]
  8. Cowtan K. D., Main P. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):148–157. doi: 10.1107/S0907444992007698. [DOI] [PubMed] [Google Scholar]
  9. Dominguez R., Souchon H., Spinelli S., Dauter Z., Wilson K. S., Chauvaux S., Béguin P., Alzari P. M. A common protein fold and similar active site in two distinct families of beta-glycanases. Nat Struct Biol. 1995 Jul;2(7):569–576. doi: 10.1038/nsb0795-569. [DOI] [PubMed] [Google Scholar]
  10. Durbecq V., Legrain C., Roovers M., Piérard A., Glansdorff N. The carbamate kinase-like carbamoyl phosphate synthetase of the hyperthermophilic archaeon Pyrococcus furiosus, a missing link in the evolution of carbamoyl phosphate biosynthesis. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12803–12808. doi: 10.1073/pnas.94.24.12803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  12. Jones M. E., Lipmann F. CHEMICAL AND ENZYMATIC SYNTHESIS OF CARBAMYL PHOSPHATE. Proc Natl Acad Sci U S A. 1960 Sep;46(9):1194–1205. doi: 10.1073/pnas.46.9.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  14. Löwe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science. 1995 Apr 28;268(5210):533–539. doi: 10.1126/science.7725097. [DOI] [PubMed] [Google Scholar]
  15. Marina A., Bravo J., Fita I., Rubio V. Crystallization, characterization and preliminary crystallographic studies of carbamate kinase of Streptococcus faecium. J Mol Biol. 1994 Jan 28;235(4):1345–1347. doi: 10.1006/jmbi.1994.1088. [DOI] [PubMed] [Google Scholar]
  16. Marina A., Uriarte M., Barcelona B., Fresquet V., Cervera J., Rubio V. Carbamate kinase from Enterococcus faecalis and Enterococcus faecium--cloning of the genes, studies on the enzyme expressed in Escherichia coli, and sequence similarity with N-acetyl-L-glutamate kinase. Eur J Biochem. 1998 Apr 1;253(1):280–291. doi: 10.1046/j.1432-1327.1998.2530280.x. [DOI] [PubMed] [Google Scholar]
  17. Marshall M., Cohen P. P. A kinetic study of the mechanism of crystalline carbamate kinase. J Biol Chem. 1966 Sep 25;241(18):4197–4208. [PubMed] [Google Scholar]
  18. Meister A. Mechanism and regulation of the glutamine-dependent carbamyl phosphate synthetase of Escherichia coli. Adv Enzymol Relat Areas Mol Biol. 1989;62:315–374. doi: 10.1002/9780470123089.ch7. [DOI] [PubMed] [Google Scholar]
  19. Nyunoya H., Lusty C. J. The carB gene of Escherichia coli: a duplicated gene coding for the large subunit of carbamoyl-phosphate synthetase. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4629–4633. doi: 10.1073/pnas.80.15.4629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Purcarea C., Simon V., Prieur D., Hervé G. Purification and characterization of carbamoyl-phosphate synthetase from the deep-sea hyperthermophilic archaebacterium Pyrococcus abyssi. Eur J Biochem. 1996 Feb 15;236(1):189–199. doi: 10.1111/j.1432-1033.1996.00189.x. [DOI] [PubMed] [Google Scholar]
  21. Rubio V., Cervera J., Lusty C. J., Bendala E., Britton H. G. Domain structure of the large subunit of Escherichia coli carbamoyl phosphate synthetase. Location of the binding site for the allosteric inhibitor UMP in the COOH-terminal domain. Biochemistry. 1991 Jan 29;30(4):1068–1075. doi: 10.1021/bi00218a027. [DOI] [PubMed] [Google Scholar]
  22. Rubio V., Llorente P., Britton H. G. Mechanism of carbamoyl phosphate synthetase from Escherichia coli--binding of the ATP molecules used in the reaction and sequestration by the enzyme of the ATP molecule that yields carbamoyl phosphate. Eur J Biochem. 1998 Jul 1;255(1):262–270. doi: 10.1046/j.1432-1327.1998.2550262.x. [DOI] [PubMed] [Google Scholar]
  23. Rubio V. Structure-function studies in carbamoyl phosphate synthetases. Biochem Soc Trans. 1993 Feb;21(1):198–202. doi: 10.1042/bst0210198. [DOI] [PubMed] [Google Scholar]
  24. Thoden J. B., Holden H. M., Wesenberg G., Raushel F. M., Rayment I. Structure of carbamoyl phosphate synthetase: a journey of 96 A from substrate to product. Biochemistry. 1997 May 27;36(21):6305–6316. doi: 10.1021/bi970503q. [DOI] [PubMed] [Google Scholar]
  25. Waldrop G. L., Rayment I., Holden H. M. Three-dimensional structure of the biotin carboxylase subunit of acetyl-CoA carboxylase. Biochemistry. 1994 Aug 30;33(34):10249–10256. doi: 10.1021/bi00200a004. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES