Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Apr;8(4):800–809. doi: 10.1110/ps.8.4.800

The use of dipolar couplings for determining the solution structure of rat apo-S100B(betabeta).

A C Drohat 1, N Tjandra 1, D M Baldisseri 1, D J Weber 1
PMCID: PMC2144316  PMID: 10211826

Abstract

The relative orientations of adjacent structural elements without many well-defined NOE contacts between them are typically poorly defined in NMR structures. For apo-S100B(betabeta) and the structurally homologous protein calcyclin, the solution structures determined by conventional NMR exhibited considerable differences and made it impossible to draw unambiguous conclusions regarding the Ca2+-induced conformational change required for target protein binding. The structure of rat apo-S100B(betabeta) was recalculated using a large number of constraints derived from dipolar couplings that were measured in a dilute liquid crystalline phase. The dipolar couplings orient bond vectors relative to a single-axis system, and thereby remove much of the uncertainty in NOE-based structures. The structure of apo-S100B(betabeta) indicates a minimal change in the first, pseudo-EF-hand Ca2+ binding site, but a large reorientation of helix 3 in the second, classical EF-hand upon Ca2+ binding.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert K. A., Wu W. C., Nairn A. C., Greengard P. Inhibition by calmodulin of calcium/phospholipid-dependent protein phosphorylation. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3622–3625. doi: 10.1073/pnas.81.12.3622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amburgey J. C., Abildgaard F., Starich M. R., Shah S., Hilt D. C., Weber D. J. 1H, 13C and 15N NMR assignments and solution secondary structure of rat Apo-S100 beta. J Biomol NMR. 1995 Sep;6(2):171–179. doi: 10.1007/BF00211781. [DOI] [PubMed] [Google Scholar]
  3. Baudier J., Bronner C., Kligman D., Cole R. D. Protein kinase C substrates from bovine brain. Purification and characterization of neuromodulin, a neuron-specific calmodulin-binding protein. J Biol Chem. 1989 Jan 25;264(3):1824–1828. [PubMed] [Google Scholar]
  4. Baudier J., Delphin C., Grunwald D., Khochbin S., Lawrence J. J. Characterization of the tumor suppressor protein p53 as a protein kinase C substrate and a S100b-binding protein. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11627–11631. doi: 10.1073/pnas.89.23.11627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bax A., Tjandra N. High-resolution heteronuclear NMR of human ubiquitin in an aqueous liquid crystalline medium. J Biomol NMR. 1997 Oct;10(3):289–292. doi: 10.1023/a:1018308717741. [DOI] [PubMed] [Google Scholar]
  6. Bianchi R., Giambanco I., Donato R. S-100 protein, but not calmodulin, binds to the glial fibrillary acidic protein and inhibits its polymerization in a Ca(2+)-dependent manner. J Biol Chem. 1993 Jun 15;268(17):12669–12674. [PubMed] [Google Scholar]
  7. Brünger A. T., Clore G. M., Gronenborn A. M., Saffrich R., Nilges M. Assessing the quality of solution nuclear magnetic resonance structures by complete cross-validation. Science. 1993 Jul 16;261(5119):328–331. doi: 10.1126/science.8332897. [DOI] [PubMed] [Google Scholar]
  8. Clore G. M., Gronenborn A. M., Bax A. A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J Magn Reson. 1998 Jul;133(1):216–221. doi: 10.1006/jmre.1998.1419. [DOI] [PubMed] [Google Scholar]
  9. Clore G. M., Gronenborn A. M., Tjandra N. Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. J Magn Reson. 1998 Mar;131(1):159–162. doi: 10.1006/jmre.1997.1345. [DOI] [PubMed] [Google Scholar]
  10. Clore G. M., Nilges M., Sukumaran D. K., Brünger A. T., Karplus M., Gronenborn A. M. The three-dimensional structure of alpha1-purothionin in solution: combined use of nuclear magnetic resonance, distance geometry and restrained molecular dynamics. EMBO J. 1986 Oct;5(10):2729–2735. doi: 10.1002/j.1460-2075.1986.tb04557.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clore G. M., Omichinski J. G., Sakaguchi K., Zambrano N., Sakamoto H., Appella E., Gronenborn A. M. Interhelical angles in the solution structure of the oligomerization domain of p53: correction. Science. 1995 Mar 10;267(5203):1515–1516. doi: 10.1126/science.7878474. [DOI] [PubMed] [Google Scholar]
  12. Donato R. Perspectives in S-100 protein biology. Review article. Cell Calcium. 1991 Nov;12(10):713–726. doi: 10.1016/0143-4160(91)90040-l. [DOI] [PubMed] [Google Scholar]
  13. Drohat A. C., Amburgey J. C., Abildgaard F., Starich M. R., Baldisseri D., Weber D. J. Solution structure of rat apo-S100B(beta beta) as determined by NMR spectroscopy. Biochemistry. 1996 Sep 10;35(36):11577–11588. doi: 10.1021/bi9612226. [DOI] [PubMed] [Google Scholar]
  14. Drohat A. C., Baldisseri D. M., Rustandi R. R., Weber D. J. Solution structure of calcium-bound rat S100B(betabeta) as determined by nuclear magnetic resonance spectroscopy,. Biochemistry. 1998 Mar 3;37(9):2729–2740. doi: 10.1021/bi972635p. [DOI] [PubMed] [Google Scholar]
  15. Groves P., Finn B. E., Kuźnicki J., Forsén S. A model for target protein binding to calcium-activated S100 dimers. FEBS Lett. 1998 Jan 16;421(3):175–179. doi: 10.1016/s0014-5793(97)01535-4. [DOI] [PubMed] [Google Scholar]
  16. Grzesiek S., Bax A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR. 1993 Mar;3(2):185–204. doi: 10.1007/BF00178261. [DOI] [PubMed] [Google Scholar]
  17. Harris N. L., Presnell S. R., Cohen F. E. Four helix bundle diversity in globular proteins. J Mol Biol. 1994 Mar 11;236(5):1356–1368. doi: 10.1016/0022-2836(94)90063-9. [DOI] [PubMed] [Google Scholar]
  18. Kilby P. M., Van Eldik L. J., Roberts G. C. The solution structure of the bovine S100B protein dimer in the calcium-free state. Structure. 1996 Sep 15;4(9):1041–1052. doi: 10.1016/s0969-2126(96)00111-6. [DOI] [PubMed] [Google Scholar]
  19. Kligman D., Hilt D. C. The S100 protein family. Trends Biochem Sci. 1988 Nov;13(11):437–443. doi: 10.1016/0968-0004(88)90218-6. [DOI] [PubMed] [Google Scholar]
  20. Matsumura H., Shiba T., Inoue T., Harada S., Kai Y. A novel mode of target recognition suggested by the 2.0 A structure of holo S100B from bovine brain. Structure. 1998 Feb 15;6(2):233–241. doi: 10.1016/s0969-2126(98)00024-0. [DOI] [PubMed] [Google Scholar]
  21. Nilges M. A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins. 1993 Nov;17(3):297–309. doi: 10.1002/prot.340170307. [DOI] [PubMed] [Google Scholar]
  22. Ottiger M., Delaglio F., Bax A. Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson. 1998 Apr;131(2):373–378. doi: 10.1006/jmre.1998.1361. [DOI] [PubMed] [Google Scholar]
  23. Patel J., Kligman D. Purification and characterization of an Mr 87,000 protein kinase C substrate from rat brain. J Biol Chem. 1987 Dec 5;262(34):16686–16691. [PubMed] [Google Scholar]
  24. Patel J., Marangos P. J., Heydorn W. E., Chang G., Verma A., Jacobowitz D. S-100-mediated inhibition of brain protein phosphorylation. J Neurochem. 1983 Oct;41(4):1040–1045. doi: 10.1111/j.1471-4159.1983.tb09048.x. [DOI] [PubMed] [Google Scholar]
  25. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  26. Potts B. C., Smith J., Akke M., Macke T. J., Okazaki K., Hidaka H., Case D. A., Chazin W. J. The structure of calcyclin reveals a novel homodimeric fold for S100 Ca(2+)-binding proteins. Nat Struct Biol. 1995 Sep;2(9):790–796. doi: 10.1038/nsb0995-790. [DOI] [PubMed] [Google Scholar]
  27. Rustandi R. R., Drohat A. C., Baldisseri D. M., Wilder P. T., Weber D. J. The Ca(2+)-dependent interaction of S100B(beta beta) with a peptide derived from p53. Biochemistry. 1998 Feb 17;37(7):1951–1960. doi: 10.1021/bi972701n. [DOI] [PubMed] [Google Scholar]
  28. Sanders C. R., 2nd, Schwonek J. P. Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry. 1992 Sep 22;31(37):8898–8905. doi: 10.1021/bi00152a029. [DOI] [PubMed] [Google Scholar]
  29. Sastry M., Ketchem R. R., Crescenzi O., Weber C., Lubienski M. J., Hidaka H., Chazin W. J. The three-dimensional structure of Ca(2+)-bound calcyclin: implications for Ca(2+)-signal transduction by S100 proteins. Structure. 1998 Feb 15;6(2):223–231. doi: 10.1016/s0969-2126(98)00023-9. [DOI] [PubMed] [Google Scholar]
  30. Schäfer B. W., Heizmann C. W. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996 Apr;21(4):134–140. doi: 10.1016/s0968-0004(96)80167-8. [DOI] [PubMed] [Google Scholar]
  31. Skelton N. J., Forsén S., Chazin W. J. 1H NMR resonance assignments, secondary structure, and global fold of Apo bovine calbindin D9k. Biochemistry. 1990 Jun 19;29(24):5752–5761. doi: 10.1021/bi00476a016. [DOI] [PubMed] [Google Scholar]
  32. Smith S. P., Shaw G. S. A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form. Structure. 1998 Feb 15;6(2):211–222. doi: 10.1016/s0969-2126(98)00022-7. [DOI] [PubMed] [Google Scholar]
  33. Strynadka N. C., James M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–998. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]
  34. Stumpo D. J., Graff J. M., Albert K. A., Greengard P., Blackshear P. J. Molecular cloning, characterization, and expression of a cDNA encoding the "80- to 87-kDa" myristoylated alanine-rich C kinase substrate: a major cellular substrate for protein kinase C. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4012–4016. doi: 10.1073/pnas.86.11.4012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Szebenyi D. M., Moffat K. The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J Biol Chem. 1986 Jul 5;261(19):8761–8777. [PubMed] [Google Scholar]
  36. Tjandra N., Bax A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science. 1997 Nov 7;278(5340):1111–1114. doi: 10.1126/science.278.5340.1111. [DOI] [PubMed] [Google Scholar]
  37. Tjandra N., Omichinski J. G., Gronenborn A. M., Clore G. M., Bax A. Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat Struct Biol. 1997 Sep;4(9):732–738. doi: 10.1038/nsb0997-732. [DOI] [PubMed] [Google Scholar]
  38. Tolman J. R., Flanagan J. M., Kennedy M. A., Prestegard J. H. Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9279–9283. doi: 10.1073/pnas.92.20.9279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Urbauer J. L., Short J. H., Dow L. K., Wand A. J. Structural analysis of a novel interaction by calmodulin: high-affinity binding of a peptide in the absence of calcium. Biochemistry. 1995 Jun 27;34(25):8099–8109. doi: 10.1021/bi00025a016. [DOI] [PubMed] [Google Scholar]
  40. Wilder P. T., Rustandi R. R., Drohat A. C., Weber D. J. S100B(betabeta) inhibits the protein kinase C-dependent phosphorylation of a peptide derived from p53 in a Ca2+-dependent manner. Protein Sci. 1998 Mar;7(3):794–798. doi: 10.1002/pro.5560070330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zimmer D. B., Cornwall E. H., Landar A., Song W. The S100 protein family: history, function, and expression. Brain Res Bull. 1995;37(4):417–429. doi: 10.1016/0361-9230(95)00040-2. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES