Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 May;8(5):1075–1086. doi: 10.1110/ps.8.5.1075

Structural bases of lectin-carbohydrate affinities: comparison with protein-folding energetics.

E García-Hernández 1, A Hernández-Arana 1
PMCID: PMC2144321  PMID: 10338018

Abstract

We have made a comparative structure based analysis of the thermodynamics of lectin-carbohydrate (L-C) binding and protein folding. Examination of the total change in accessible surface area in those processes revealed a much larger decrease in free energy per unit of area buried in the case of L-C associations. According to our analysis, this larger stabilization of L-C interactions arises from a more favorable enthalpy of burying a unit of polar surface area, and from higher proportions of polar areas. Hydrogen bonds present at 14 L-C interfaces were identified, and their overall characteristics were compared to those reported before for hydrogen bonds in protein structures. Three major factors might explain why polar-polar interactions are stronger in L-C binding than in protein folding: (1) higher surface density of hydrogen bonds; (2) better hydrogen-bonding geometry; (3) larger proportion of hydrogen bonds involving charged groups. Theoretically, the binding entropy can be partitioned into three main contributions: entropy changes due to surface desolvation, entropy losses arising from freezing rotatable bonds, and entropic effects that result from restricting translation and overall rotation motions. These contributions were estimated from structural information and added up to give calculated binding entropies. Good correlation between experimental and calculated values was observed when solvation effects were treated according to a parametrization developed by other authors from protein folding studies. Finally, our structural parametrization gave calculated free energies that deviate from experimental values by 1.1 kcal/mol on the average; this amounts to an uncertainty of one order of magnitude in the binding constant.

Full Text

The Full Text of this article is available as a PDF (249.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amzel L. M. Loss of translational entropy in binding, folding, and catalysis. Proteins. 1997 Jun;28(2):144–149. [PubMed] [Google Scholar]
  2. Asensio J. L., Canada F. J., Bruix M., Rodriguez-Romero A., Jimenez-Barbero J. The interaction of hevein with N-acetylglucosamine-containing oligosaccharides. Solution structure of hevein complexed to chitobiose. Eur J Biochem. 1995 Jun 1;230(2):621–633. doi: 10.1111/j.1432-1033.1995.tb20604.x. [DOI] [PubMed] [Google Scholar]
  3. Bains G., Lee R. T., Lee Y. C., Freire E. Microcalorimetric study of wheat germ agglutinin binding to N-acetylglucosamine and its oligomers. Biochemistry. 1992 Dec 22;31(50):12624–12628. doi: 10.1021/bi00165a012. [DOI] [PubMed] [Google Scholar]
  4. Baker B. M., Murphy K. P. Dissecting the energetics of a protein-protein interaction: the binding of ovomucoid third domain to elastase. J Mol Biol. 1997 May 2;268(2):557–569. doi: 10.1006/jmbi.1997.0977. [DOI] [PubMed] [Google Scholar]
  5. Banerjee R., Das K., Ravishankar R., Suguna K., Surolia A., Vijayan M. Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex. J Mol Biol. 1996 Jun 7;259(2):281–296. doi: 10.1006/jmbi.1996.0319. [DOI] [PubMed] [Google Scholar]
  6. Bardi J. S., Luque I., Freire E. Structure-based thermodynamic analysis of HIV-1 protease inhibitors. Biochemistry. 1997 Jun 3;36(22):6588–6596. doi: 10.1021/bi9701742. [DOI] [PubMed] [Google Scholar]
  7. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  8. Bourne Y., Roussel A., Frey M., Rougé P., Fontecilla-Camps J. C., Cambillau C. Three-dimensional structures of complexes of Lathyrus ochrus isolectin I with glucose and mannose: fine specificity of the monosaccharide-binding site. Proteins. 1990;8(4):365–376. doi: 10.1002/prot.340080410. [DOI] [PubMed] [Google Scholar]
  9. Brady G. P., Sharp K. A. Energetics of cyclic dipeptide crystal packing and solvation. Biophys J. 1997 Feb;72(2 Pt 1):913–927. doi: 10.1016/s0006-3495(97)78725-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Burrows S. D., Doyle M. L., Murphy K. P., Franklin S. G., White J. R., Brooks I., McNulty D. E., Scott M. O., Knutson J. R., Porter D. Determination of the monomer-dimer equilibrium of interleukin-8 reveals it is a monomer at physiological concentrations. Biochemistry. 1994 Nov 1;33(43):12741–12745. doi: 10.1021/bi00209a002. [DOI] [PubMed] [Google Scholar]
  11. Chothia C. The nature of the accessible and buried surfaces in proteins. J Mol Biol. 1976 Jul 25;105(1):1–12. doi: 10.1016/0022-2836(76)90191-1. [DOI] [PubMed] [Google Scholar]
  12. D'Aquino J. A., Gómez J., Hilser V. J., Lee K. H., Amzel L. M., Freire E. The magnitude of the backbone conformational entropy change in protein folding. Proteins. 1996 Jun;25(2):143–156. doi: 10.1002/(SICI)1097-0134(199606)25:2<143::AID-PROT1>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  13. Delbaere L. T., Vandonselaar M., Prasad L., Quail J. W., Wilson K. S., Dauter Z. Structures of the lectin IV of Griffonia simplicifolia and its complex with the Lewis b human blood group determinant at 2.0 A resolution. J Mol Biol. 1993 Apr 5;230(3):950–965. doi: 10.1006/jmbi.1993.1212. [DOI] [PubMed] [Google Scholar]
  14. Doig A. J., Sternberg M. J. Side-chain conformational entropy in protein folding. Protein Sci. 1995 Nov;4(11):2247–2251. doi: 10.1002/pro.5560041101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Finkelstein A. V., Janin J. The price of lost freedom: entropy of bimolecular complex formation. Protein Eng. 1989 Oct;3(1):1–3. doi: 10.1093/protein/3.1.1. [DOI] [PubMed] [Google Scholar]
  16. Freire E. Thermodynamics of partly folded intermediates in proteins. Annu Rev Biophys Biomol Struct. 1995;24:141–165. doi: 10.1146/annurev.bb.24.060195.001041. [DOI] [PubMed] [Google Scholar]
  17. García-Hernández E., Zubillaga R. A., Rojo-Domínguez A., Rodríguez-Romero A., Hernández-Arana A. New insights into the molecular basis of lectin-carbohydrate interactions: a calorimetric and structural study of the association of hevein to oligomers of N-acetylglucosamine. Proteins. 1997 Dec;29(4):467–477. doi: 10.1002/(sici)1097-0134(199712)29:4<467::aid-prot7>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  18. Harrop S. J., Helliwell J. R., Wan T. C., Kalb A. J., Tong L., Yariv J. Structure solution of a cubic crystal of concanavalin A complexed with methyl alpha-D-glucopyranoside. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):143–155. doi: 10.1107/S0907444995008742. [DOI] [PubMed] [Google Scholar]
  19. Hendsch Z. S., Tidor B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 1994 Feb;3(2):211–226. doi: 10.1002/pro.5560030206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hester G., Kaku H., Goldstein I. J., Wright C. S. Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family. Nat Struct Biol. 1995 Jun;2(6):472–479. doi: 10.1038/nsb0695-472. [DOI] [PubMed] [Google Scholar]
  21. Hirabayashi J., Kasai K. Effect of amino acid substitution by sited-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa beta-galactoside-binding lectin. J Biol Chem. 1991 Dec 15;266(35):23648–23653. [PubMed] [Google Scholar]
  22. Holtzer A. The "cratic correction" and related fallacies. Biopolymers. 1995 Jun;35(6):595–602. doi: 10.1002/bip.360350605. [DOI] [PubMed] [Google Scholar]
  23. Homans S. W., Rutherford T. Oligosaccharides and recognition--a 'shape' problem probed by n.m.r. and molecular modelling. Biochem Soc Trans. 1993 May;21(2):449–452. doi: 10.1042/bst0210449. [DOI] [PubMed] [Google Scholar]
  24. Imberty A. Oligosaccharide structures: theory versus experiment. Curr Opin Struct Biol. 1997 Oct;7(5):617–623. doi: 10.1016/s0959-440x(97)80069-3. [DOI] [PubMed] [Google Scholar]
  25. Iobst S. T., Drickamer K. Binding of sugar ligands to Ca(2+)-dependent animal lectins. II. Generation of high-affinity galactose binding by site-directed mutagenesis. J Biol Chem. 1994 Jun 3;269(22):15512–15519. [PubMed] [Google Scholar]
  26. Iobst S. T., Wormald M. R., Weis W. I., Dwek R. A., Drickamer K. Binding of sugar ligands to Ca(2+)-dependent animal lectins. I. Analysis of mannose binding by site-directed mutagenesis and NMR. J Biol Chem. 1994 Jun 3;269(22):15505–15511. [PubMed] [Google Scholar]
  27. Janin J. Elusive affinities. Proteins. 1995 Jan;21(1):30–39. doi: 10.1002/prot.340210105. [DOI] [PubMed] [Google Scholar]
  28. Lazaridis T., Archontis G., Karplus M. Enthalpic contribution to protein stability: insights from atom-based calculations and statistical mechanics. Adv Protein Chem. 1995;47:231–306. doi: 10.1016/s0065-3233(08)60547-1. [DOI] [PubMed] [Google Scholar]
  29. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  30. Leffler H., Barondes S. H. Specificity of binding of three soluble rat lung lectins to substituted and unsubstituted mammalian beta-galactosides. J Biol Chem. 1986 Aug 5;261(22):10119–10126. [PubMed] [Google Scholar]
  31. Liao D. I., Kapadia G., Ahmed H., Vasta G. R., Herzberg O. Structure of S-lectin, a developmentally regulated vertebrate beta-galactoside-binding protein. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1428–1432. doi: 10.1073/pnas.91.4.1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Makhatadze G. I., Privalov P. L. Energetics of protein structure. Adv Protein Chem. 1995;47:307–425. doi: 10.1016/s0065-3233(08)60548-3. [DOI] [PubMed] [Google Scholar]
  33. Mandal D. K., Kishore N., Brewer C. F. Thermodynamics of lectin-carbohydrate interactions. Titration microcalorimetry measurements of the binding of N-linked carbohydrates and ovalbumin to concanavalin A. Biochemistry. 1994 Feb 8;33(5):1149–1156. doi: 10.1021/bi00171a014. [DOI] [PubMed] [Google Scholar]
  34. McDonald I. K., Thornton J. M. Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994 May 20;238(5):777–793. doi: 10.1006/jmbi.1994.1334. [DOI] [PubMed] [Google Scholar]
  35. Merritt E. A., Sarfaty S., van den Akker F., L'Hoir C., Martial J. A., Hol W. G. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 1994 Feb;3(2):166–175. doi: 10.1002/pro.5560030202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Merritt E. A., Sixma T. K., Kalk K. H., van Zanten B. A., Hol W. G. Galactose-binding site in Escherichia coli heat-labile enterotoxin (LT) and cholera toxin (CT). Mol Microbiol. 1994 Aug;13(4):745–753. doi: 10.1111/j.1365-2958.1994.tb00467.x. [DOI] [PubMed] [Google Scholar]
  37. Murphy K. P., Freire E. Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem. 1992;43:313–361. doi: 10.1016/s0065-3233(08)60556-2. [DOI] [PubMed] [Google Scholar]
  38. Murphy K. P., Xie D., Garcia K. C., Amzel L. M., Freire E. Structural energetics of peptide recognition: angiotensin II/antibody binding. Proteins. 1993 Feb;15(2):113–120. doi: 10.1002/prot.340150203. [DOI] [PubMed] [Google Scholar]
  39. Murphy K. P., Xie D., Thompson K. S., Amzel L. M., Freire E. Entropy in biological binding processes: estimation of translational entropy loss. Proteins. 1994 Jan;18(1):63–67. doi: 10.1002/prot.340180108. [DOI] [PubMed] [Google Scholar]
  40. Naghibi H., Tamura A., Sturtevant J. M. Significant discrepancies between van't Hoff and calorimetric enthalpies. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5597–5599. doi: 10.1073/pnas.92.12.5597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Naismith J. H., Field R. A. Structural basis of trimannoside recognition by concanavalin A. J Biol Chem. 1996 Jan 12;271(2):972–976. doi: 10.1074/jbc.271.2.972. [DOI] [PubMed] [Google Scholar]
  42. Ng K. K., Drickamer K., Weis W. I. Structural analysis of monosaccharide recognition by rat liver mannose-binding protein. J Biol Chem. 1996 Jan 12;271(2):663–674. doi: 10.1074/jbc.271.2.663. [DOI] [PubMed] [Google Scholar]
  43. Privalov P. L., Makhatadze G. I. Contribution of hydration to protein folding thermodynamics. II. The entropy and Gibbs energy of hydration. J Mol Biol. 1993 Jul 20;232(2):660–679. doi: 10.1006/jmbi.1993.1417. [DOI] [PubMed] [Google Scholar]
  44. Ramkumar R., Surolia A., Podder S. K. Energetics of carbohydrate binding by a 14 kDa S-type mammalian lectin. Biochem J. 1995 May 15;308(Pt 1):237–241. doi: 10.1042/bj3080237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rini J. M., Hardman K. D., Einspahr H., Suddath F. L., Carver J. P. X-ray crystal structure of a pea lectin-trimannoside complex at 2.6 A resolution. J Biol Chem. 1993 May 15;268(14):10126–10132. doi: 10.2210/pdb1rin/pdb. [DOI] [PubMed] [Google Scholar]
  46. Rini J. M. Lectin structure. Annu Rev Biophys Biomol Struct. 1995;24:551–577. doi: 10.1146/annurev.bb.24.060195.003003. [DOI] [PubMed] [Google Scholar]
  47. Schwarz F. P., Misquith S., Surolia A. Effect of substituent on the thermodynamics of D-glucopyranoside binding to concanavalin A, pea (Pisum sativum) lectin and lentil (Lens culinaris) lectin. Biochem J. 1996 May 15;316(Pt 1):123–129. doi: 10.1042/bj3160123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schwarz F. P., Puri K. D., Bhat R. G., Surolia A. Thermodynamics of monosaccharide binding to concanavalin A, pea (Pisum sativum) lectin, and lentil (Lens culinaris) lectin. J Biol Chem. 1993 Apr 15;268(11):7668–7677. [PubMed] [Google Scholar]
  49. Shaanan B., Lis H., Sharon N. Structure of a legume lectin with an ordered N-linked carbohydrate in complex with lactose. Science. 1991 Nov 8;254(5033):862–866. doi: 10.1126/science.1948067. [DOI] [PubMed] [Google Scholar]
  50. Sharon N., Lis H. Lectins as cell recognition molecules. Science. 1989 Oct 13;246(4927):227–234. doi: 10.1126/science.2552581. [DOI] [PubMed] [Google Scholar]
  51. Siebert H. C., Gilleron M., Kaltner H., von der Lieth C. W., Kozár T., Bovin N., Korchagina E. Y., Vliegenthart J. F., Gabius H. J. NMR-based, molecular dynamics- and random walk molecular mechanics-supported study of conformational aspects of a carbohydrate ligand (Gal beta 1-2Gal beta 1-R) for an animal galectin in the free and in the bound state. Biochem Biophys Res Commun. 1996 Feb 6;219(1):205–212. doi: 10.1006/bbrc.1996.0206. [DOI] [PubMed] [Google Scholar]
  52. Stickle D. F., Presta L. G., Dill K. A., Rose G. D. Hydrogen bonding in globular proteins. J Mol Biol. 1992 Aug 20;226(4):1143–1159. doi: 10.1016/0022-2836(92)91058-w. [DOI] [PubMed] [Google Scholar]
  53. Surolia A., Sharon N., Schwarz F. P. Thermodynamics of monosaccharide and disaccharide binding to Erythrina corallodendron lectin. J Biol Chem. 1996 Jul 26;271(30):17697–17703. doi: 10.1074/jbc.271.30.17697. [DOI] [PubMed] [Google Scholar]
  54. Weatherman R. V., Mortell K. H., Chervenak M., Kiessling L. L., Toone E. J. Specificity of C-glycoside complexation by mannose/glucose specific lectins. Biochemistry. 1996 Mar 19;35(11):3619–3624. doi: 10.1021/bi951916z. [DOI] [PubMed] [Google Scholar]
  55. Weis W. I., Drickamer K., Hendrickson W. A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature. 1992 Nov 12;360(6400):127–134. doi: 10.1038/360127a0. [DOI] [PubMed] [Google Scholar]
  56. Weis W. I., Drickamer K. Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem. 1996;65:441–473. doi: 10.1146/annurev.bi.65.070196.002301. [DOI] [PubMed] [Google Scholar]
  57. Wright C. S., Hester G. The 2.0 A structure of a cross-linked complex between snowdrop lectin and a branched mannopentaose: evidence for two unique binding modes. Structure. 1996 Nov 15;4(11):1339–1352. doi: 10.1016/s0969-2126(96)00141-4. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES