Abstract
Alanine scanning mutagenesis of the HyHEL-10 paratope of the HyHEL-10/HEWL complex demonstrates that the energetically important side chains (hot spots) of both partners are in contact. A plot of deltadeltaG(HyHEL-10_mutant) vs. deltadeltaG(HEWL_mutant) for the five of six interacting side-chain hydrogen bonds is linear (Slope = 1). Only 3 of the 13 residues in the HEWL epitope contribute >4 kcal/mol to the free energy of formation of the complex when replaced by alanine, but 6 of the 12 HyHEL-10 paratope amino acids do. Double mutant cycle analysis of the single crystallographically identified salt bridge, D32H/K97, shows that there is a significant energetic penalty when either partner is replaced with a neutral side-chain amino acid, but the D32(H)N/K97M complex is as stable as the WT. The role of the disproportionately high number of Tyr residues in the CDR was evaluated by comparing the deltadeltaG values of the Tyr --> Phe vs. the corresponding Tyr --> Ala mutations. The nonpolar contacts in the light chain contribute only about one-half of the total deltadeltaG observed for the Tyr --> Ala mutation, while they are significantly more important in the heavy chain. Replacement of the N31L/K96 hydrogen bond with a salt bridge, N31D(L)/K96, destabilizes the complex by 1.4 kcal/mol. The free energy of interaction, deltadeltaG(int), obtained from double mutant cycle analysis showed that deltadeltaG(int) for any complex for which the HEWL residue probed is a major immunodeterminant is very close to the loss of free energy observed for the HyHEL-10 single mutant. Error propagation analysis of double mutant cycles shows that data of atypically high precision are required to use this method meaningfully, except where large deltadeltaG values are analyzed.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackermann E. J., Ang E. T., Kanter J. R., Tsigelny I., Taylor P. Identification of pairwise interactions in the alpha-neurotoxin-nicotinic acetylcholine receptor complex through double mutant cycles. J Biol Chem. 1998 May 1;273(18):10958–10964. doi: 10.1074/jbc.273.18.10958. [DOI] [PubMed] [Google Scholar]
- Alber T., Sun D. P., Nye J. A., Muchmore D. C., Matthews B. W. Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein. Biochemistry. 1987 Jun 30;26(13):3754–3758. doi: 10.1021/bi00387a002. [DOI] [PubMed] [Google Scholar]
- Carter P. J., Winter G., Wilkinson A. J., Fersht A. R. The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus). Cell. 1984 Oct;38(3):835–840. doi: 10.1016/0092-8674(84)90278-2. [DOI] [PubMed] [Google Scholar]
- Chothia C., Lesk A. M., Tramontano A., Levitt M., Smith-Gill S. J., Air G., Sheriff S., Padlan E. A., Davies D., Tulip W. R. Conformations of immunoglobulin hypervariable regions. Nature. 1989 Dec 21;342(6252):877–883. doi: 10.1038/342877a0. [DOI] [PubMed] [Google Scholar]
- Clackson T., Ultsch M. H., Wells J. A., de Vos A. M. Structural and functional analysis of the 1:1 growth hormone:receptor complex reveals the molecular basis for receptor affinity. J Mol Biol. 1998 Apr 17;277(5):1111–1128. doi: 10.1006/jmbi.1998.1669. [DOI] [PubMed] [Google Scholar]
- Clackson T., Wells J. A. A hot spot of binding energy in a hormone-receptor interface. Science. 1995 Jan 20;267(5196):383–386. doi: 10.1126/science.7529940. [DOI] [PubMed] [Google Scholar]
- Dall'Acqua W., Goldman E. R., Eisenstein E., Mariuzza R. A. A mutational analysis of the binding of two different proteins to the same antibody. Biochemistry. 1996 Jul 30;35(30):9667–9676. doi: 10.1021/bi960819i. [DOI] [PubMed] [Google Scholar]
- Dall'Acqua W., Goldman E. R., Lin W., Teng C., Tsuchiya D., Li H., Ysern X., Braden B. C., Li Y., Smith-Gill S. J. A mutational analysis of binding interactions in an antigen-antibody protein-protein complex. Biochemistry. 1998 Jun 2;37(22):7981–7991. doi: 10.1021/bi980148j. [DOI] [PubMed] [Google Scholar]
- Davies D. R., Cohen G. H. Interactions of protein antigens with antibodies. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):7–12. doi: 10.1073/pnas.93.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dougan D. A., Malby R. L., Gruen L. C., Kortt A. A., Hudson P. J. Effects of substitutions in the binding surface of an antibody on antigen affinity. Protein Eng. 1998 Jan;11(1):65–74. doi: 10.1093/protein/11.1.65. [DOI] [PubMed] [Google Scholar]
- Fersht A. R., Shi J. P., Knill-Jones J., Lowe D. M., Wilkinson A. J., Blow D. M., Brick P., Carter P., Waye M. M., Winter G. Hydrogen bonding and biological specificity analysed by protein engineering. Nature. 1985 Mar 21;314(6008):235–238. doi: 10.1038/314235a0. [DOI] [PubMed] [Google Scholar]
- Frisch C., Schreiber G., Johnson C. M., Fersht A. R. Thermodynamics of the interaction of barnase and barstar: changes in free energy versus changes in enthalpy on mutation. J Mol Biol. 1997 Apr 4;267(3):696–706. doi: 10.1006/jmbi.1997.0892. [DOI] [PubMed] [Google Scholar]
- Goldman E. R., Dall'Acqua W., Braden B. C., Mariuzza R. A. Analysis of binding interactions in an idiotope-antiidiotope protein-protein complex by double mutant cycles. Biochemistry. 1997 Jan 7;36(1):49–56. doi: 10.1021/bi961769k. [DOI] [PubMed] [Google Scholar]
- Hendsch Z. S., Tidor B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 1994 Feb;3(2):211–226. doi: 10.1002/pro.5560030206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horovitz A., Serrano L., Avron B., Bycroft M., Fersht A. R. Strength and co-operativity of contributions of surface salt bridges to protein stability. J Mol Biol. 1990 Dec 20;216(4):1031–1044. doi: 10.1016/S0022-2836(99)80018-7. [DOI] [PubMed] [Google Scholar]
- Janin J., Chothia C. The structure of protein-protein recognition sites. J Biol Chem. 1990 Sep 25;265(27):16027–16030. [PubMed] [Google Scholar]
- Kabat E. A., Wu T. T., Bilofsky H. Unusual distributions of amino acids in complementarity-determining (hypervariable) segments of heavy and light chains of immunoglobulins and their possible roles in specificity of antibody-combining sites. J Biol Chem. 1977 Oct 10;252(19):6609–6616. [PubMed] [Google Scholar]
- Kam-Morgan L. N., Smith-Gill S. J., Taylor M. G., Zhang L., Wilson A. C., Kirsch J. F. High-resolution mapping of the HyHEL-10 epitope of chicken lysozyme by site-directed mutagenesis. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3958–3962. doi: 10.1073/pnas.90.9.3958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landt O., Grunert H. P., Hahn U. A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene. 1990 Nov 30;96(1):125–128. doi: 10.1016/0378-1119(90)90351-q. [DOI] [PubMed] [Google Scholar]
- Manning T. C., Schlueter C. J., Brodnicki T. C., Parke E. A., Speir J. A., Garcia K. C., Teyton L., Wilson I. A., Kranz D. M. Alanine scanning mutagenesis of an alphabeta T cell receptor: mapping the energy of antigen recognition. Immunity. 1998 Apr;8(4):413–425. doi: 10.1016/s1074-7613(00)80547-6. [DOI] [PubMed] [Google Scholar]
- Martin A. C., Thornton J. M. Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. J Mol Biol. 1996 Nov 15;263(5):800–815. doi: 10.1006/jmbi.1996.0617. [DOI] [PubMed] [Google Scholar]
- Mian I. S., Bradwell A. R., Olson A. J. Structure, function and properties of antibody binding sites. J Mol Biol. 1991 Jan 5;217(1):133–151. doi: 10.1016/0022-2836(91)90617-f. [DOI] [PubMed] [Google Scholar]
- Padlan E. A. On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands. Proteins. 1990;7(2):112–124. doi: 10.1002/prot.340070203. [DOI] [PubMed] [Google Scholar]
- Padlan E. A., Silverton E. W., Sheriff S., Cohen G. H., Smith-Gill S. J., Davies D. R. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5938–5942. doi: 10.1073/pnas.86.15.5938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pomès R., Willson R. C., McCammon J. A. Free energy simulations of the HyHEL-10/HEL antibody-antigen complex. Protein Eng. 1995 Jul;8(7):663–675. doi: 10.1093/protein/8.7.663. [DOI] [PubMed] [Google Scholar]
- Pons J., Planas A., Juncosa M., Querol E. PCR site-directed mutagenesis using Pyrococcus sp GB-D polymerase coupled to a rapid screening procedure. Application to a beta-glucanase gene. Methods Mol Biol. 1997;67:209–218. doi: 10.1385/0-89603-483-6:209. [DOI] [PubMed] [Google Scholar]
- Pons J., Planas A., Querol E. Contribution of a disulfide bridge to the stability of 1,3-1,4-beta-D-glucan 4-glucanohydrolase from Bacillus licheniformis. Protein Eng. 1995 Sep;8(9):939–945. doi: 10.1093/protein/8.9.939. [DOI] [PubMed] [Google Scholar]
- Rajpal A., Taylor M. G., Kirsch J. F. Quantitative evaluation of the chicken lysozyme epitope in the HyHEL-10 Fab complex: free energies and kinetics. Protein Sci. 1998 Sep;7(9):1868–1874. doi: 10.1002/pro.5560070903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreiber G., Fersht A. R. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol. 1995 Apr 28;248(2):478–486. doi: 10.1016/s0022-2836(95)80064-6. [DOI] [PubMed] [Google Scholar]
- Schreiber G., Frisch C., Fersht A. R. The role of Glu73 of barnase in catalysis and the binding of barstar. J Mol Biol. 1997 Jul 4;270(1):111–122. doi: 10.1006/jmbi.1997.1080. [DOI] [PubMed] [Google Scholar]
- Serrano L., Horovitz A., Avron B., Bycroft M., Fersht A. R. Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double-mutant cycles. Biochemistry. 1990 Oct 9;29(40):9343–9352. doi: 10.1021/bi00492a006. [DOI] [PubMed] [Google Scholar]
- Serrano L., Kellis J. T., Jr, Cann P., Matouschek A., Fersht A. R. The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability. J Mol Biol. 1992 Apr 5;224(3):783–804. doi: 10.1016/0022-2836(92)90562-x. [DOI] [PubMed] [Google Scholar]
- Smith-Gill S. J., Lavoie T. B., Mainhart C. R. Antigenic regions defined by monoclonal antibodies correspond to structural domains of avian lysozyme. J Immunol. 1984 Jul;133(1):384–393. [PubMed] [Google Scholar]
- Souza S. C., Frick G. P., Wang X., Kopchick J. J., Lobo R. B., Goodman H. M. A single arginine residue determines species specificity of the human growth hormone receptor. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):959–963. doi: 10.1073/pnas.92.4.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor M. G., Rajpal A., Kirsch J. F. Kinetic epitope mapping of the chicken lysozyme.HyHEL-10 Fab complex: delineation of docking trajectories. Protein Sci. 1998 Sep;7(9):1857–1867. doi: 10.1002/pro.5560070902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsumoto K., Ogasahara K., Ueda Y., Watanabe K., Yutani K., Kumagai I. Role of Tyr residues in the contact region of anti-lysozyme monoclonal antibody HyHEL10 for antigen binding. J Biol Chem. 1995 Aug 4;270(31):18551–18557. doi: 10.1074/jbc.270.31.18551. [DOI] [PubMed] [Google Scholar]
- Tsumoto K., Ogasahara K., Ueda Y., Watanabe K., Yutani K., Kumagai I. Role of salt bridge formation in antigen-antibody interaction. Entropic contribution to the complex between hen egg white lysozyme and its monoclonal antibody HyHEL10. J Biol Chem. 1996 Dec 20;271(51):32612–32616. doi: 10.1074/jbc.271.51.32612. [DOI] [PubMed] [Google Scholar]
- Wells J. A. Binding in the growth hormone receptor complex. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):1–6. doi: 10.1073/pnas.93.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xavier K. A., Willson R. C. Association and dissociation kinetics of anti-hen egg lysozyme monoclonal antibodies HyHEL-5 and HyHEL-10. Biophys J. 1998 Apr;74(4):2036–2045. doi: 10.1016/s0006-3495(98)77910-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ysern X., Li H., Mariuzza R. A. Imperfect interfaces. Nat Struct Biol. 1998 Jun;5(6):412–414. doi: 10.1038/nsb0698-412. [DOI] [PubMed] [Google Scholar]