Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 May;8(5):1134–1143. doi: 10.1110/ps.8.5.1134

The effect of multiple binding modes on empirical modeling of ligand docking to proteins.

R Brem 1, K A Dill 1
PMCID: PMC2144332  PMID: 10338024

Abstract

A popular approach to the computational modeling of ligand/receptor interactions is to use an empirical free energy like model with adjustable parameters. Parameters are learned from one set of complexes, then used to predict another set. To improve these empirical methods requires an independent way to study their inherent errors. We introduce a toy model of ligand/receptor binding as a workbench for testing such errors. We study the errors incurred from the two state binding assumption--the assumption that a ligand is either bound in one orientation, or unbound. We find that the two state assumption can cause large errors in free energy predictions, but it does not affect rank order predictions significantly. We show that fitting parameters using data from high affinity ligands can reduce two state errors; so can using more physical models that do not use the two state assumption. We also find that when using two state models to predict free energies, errors are more severe on high affinity ligands than low affinity ligands. And we show that two state errors can be diagnosed by systematically adding new binding modes when predicting free energies: if predictions worsen as the modes are added, then the two state assumption in the fitting step may be at fault.

Full Text

The Full Text of this article is available as a PDF (736.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajay, Murcko M. A. Computational methods to predict binding free energy in ligand-receptor complexes. J Med Chem. 1995 Dec 22;38(26):4953–4967. doi: 10.1021/jm00026a001. [DOI] [PubMed] [Google Scholar]
  2. Ambler R. P. Sequence variability in bacterial cytochromes c. Biochim Biophys Acta. 1991 May 23;1058(1):42–47. doi: 10.1016/s0005-2728(05)80266-x. [DOI] [PubMed] [Google Scholar]
  3. Ambler R. P., Tobari J. The primary structures of Pseudomonas AM1 amicyanin and pseudoazurin. Two new sequence classes of blue copper proteins. Biochem J. 1985 Dec 1;232(2):451–457. doi: 10.1042/bj2320451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. André E., Kessler M., Briquel M. E., Alexandre P., Hurault de Ligny B., Huriet C. Intérêt pratique du dosage des produits de dégradation de la fibrine urinaire dans la surveillance précoce des transplantés rénaux. Pathol Biol (Paris) 1983 Jan;31(1):23–27. [PubMed] [Google Scholar]
  5. Biemann K. Appendix 5. Nomenclature for peptide fragment ions (positive ions). Methods Enzymol. 1990;193:886–887. doi: 10.1016/0076-6879(90)93460-3. [DOI] [PubMed] [Google Scholar]
  6. Birdsall B., Feeney J., Tendler S. J., Hammond S. J., Roberts G. C. Dihydrofolate reductase: multiple conformations and alternative modes of substrate binding. Biochemistry. 1989 Mar 7;28(5):2297–2305. doi: 10.1021/bi00431a048. [DOI] [PubMed] [Google Scholar]
  7. Blankenship R. E. Origin and early evolution of photosynthesis. Photosynth Res. 1992;33:91–111. [PubMed] [Google Scholar]
  8. Blankenship R. E. Protein structure, electron transfer and evolution of prokaryotic photosynthetic reaction centers. Antonie Van Leeuwenhoek. 1994;65(4):311–329. doi: 10.1007/BF00872216. [DOI] [PubMed] [Google Scholar]
  9. Bruschi M., Guerlesquin F. Structure, function and evolution of bacterial ferredoxins. FEMS Microbiol Rev. 1988 Apr-Jun;4(2):155–175. doi: 10.1111/j.1574-6968.1988.tb02741.x. [DOI] [PubMed] [Google Scholar]
  10. Böhm H. J. The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des. 1994 Jun;8(3):243–256. doi: 10.1007/BF00126743. [DOI] [PubMed] [Google Scholar]
  11. CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
  12. Checa A., Ortiz A. R., de Pascual-Teresa B., Gago F. Assessment of solvation effects on calculated binding affinity differences: trypsin inhibition by flavonoids as a model system for congeneric series. J Med Chem. 1997 Dec 5;40(25):4136–4145. doi: 10.1021/jm970245v. [DOI] [PubMed] [Google Scholar]
  13. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  14. Condit C. M., Meagher R. B. Expression of a gene encoding a glycine-rich protein in petunia. Mol Cell Biol. 1987 Dec;7(12):4273–4279. doi: 10.1128/mcb.7.12.4273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Durley R., Chen L., Lim L. W., Mathews F. S., Davidson V. L. Crystal structure analysis of amicyanin and apoamicyanin from Paracoccus denitrificans at 2.0 A and 1.8 A resolution. Protein Sci. 1993 May;2(5):739–752. doi: 10.1002/pro.5560020506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Germann U. A., Müller G., Hunziker P. E., Lerch K. Characterization of two allelic forms of Neurospora crassa laccase. Amino- and carboxyl-terminal processing of a precursor. J Biol Chem. 1988 Jan 15;263(2):885–896. [PubMed] [Google Scholar]
  17. Gilson M. K., Given J. A., Head M. S. A new class of models for computing receptor-ligand binding affinities. Chem Biol. 1997 Feb;4(2):87–92. doi: 10.1016/s1074-5521(97)90251-9. [DOI] [PubMed] [Google Scholar]
  18. Guss J. M., Freeman H. C. Structure of oxidized poplar plastocyanin at 1.6 A resolution. J Mol Biol. 1983 Sep 15;169(2):521–563. doi: 10.1016/s0022-2836(83)80064-3. [DOI] [PubMed] [Google Scholar]
  19. He S., Modi S., Bendall D. S., Gray J. C. The surface-exposed tyrosine residue Tyr83 of pea plastocyanin is involved in both binding and electron transfer reactions with cytochrome f. EMBO J. 1991 Dec;10(13):4011–4016. doi: 10.1002/j.1460-2075.1991.tb04976.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hochkoeppler A., Zannoni D., Ciurli S., Meyer T. E., Cusanovich M. A., Tollin G. Kinetics of photo-induced electron transfer from high-potential iron-sulfur protein to the photosynthetic reaction center of the purple phototroph Rhodoferax fermentans. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6998–7002. doi: 10.1073/pnas.93.14.6998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Horton N., Lewis M. Calculation of the free energy of association for protein complexes. Protein Sci. 1992 Jan;1(1):169–181. doi: 10.1002/pro.5560010117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jackson R. M., Sternberg M. J. A continuum model for protein-protein interactions: application to the docking problem. J Mol Biol. 1995 Jul 7;250(2):258–275. doi: 10.1006/jmbi.1995.0375. [DOI] [PubMed] [Google Scholar]
  23. Jain A. N. Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J Comput Aided Mol Des. 1996 Oct;10(5):427–440. doi: 10.1007/BF00124474. [DOI] [PubMed] [Google Scholar]
  24. Janin J. Quantifying biological specificity: the statistical mechanics of molecular recognition. Proteins. 1996 Aug;25(4):438–445. doi: 10.1002/prot.4. [DOI] [PubMed] [Google Scholar]
  25. Kawula T. H., Spinola S. M., Klapper D. G., Cannon J. G. Localization of a conserved epitope and an azurin-like domain in the H.8 protein of pathogenic Neisseria. Mol Microbiol. 1987 Sep;1(2):179–185. doi: 10.1111/j.1365-2958.1987.tb00510.x. [DOI] [PubMed] [Google Scholar]
  26. Knegtel R. M., Kuntz I. D., Oshiro C. M. Molecular docking to ensembles of protein structures. J Mol Biol. 1997 Feb 21;266(2):424–440. doi: 10.1006/jmbi.1996.0776. [DOI] [PubMed] [Google Scholar]
  27. Krystek S., Stouch T., Novotny J. Affinity and specificity of serine endopeptidase-protein inhibitor interactions. Empirical free energy calculations based on X-ray crystallographic structures. J Mol Biol. 1993 Dec 5;234(3):661–679. doi: 10.1006/jmbi.1993.1619. [DOI] [PubMed] [Google Scholar]
  28. Ladbury J. E., Hensmann M., Panayotou G., Campbell I. D. Alternative modes of tyrosyl phosphopeptide binding to a Src family SH2 domain: implications for regulation of tyrosine kinase activity. Biochemistry. 1996 Aug 27;35(34):11062–11069. doi: 10.1021/bi960543e. [DOI] [PubMed] [Google Scholar]
  29. Mattos C., Rasmussen B., Ding X., Petsko G. A., Ringe D. Analogous inhibitors of elastase do not always bind analogously. Nat Struct Biol. 1994 Jan;1(1):55–58. doi: 10.1038/nsb0194-55. [DOI] [PubMed] [Google Scholar]
  30. McManus J. D., Brune D. C., Han J., Sanders-Loehr J., Meyer T. E., Cusanovich M. A., Tollin G., Blankenship R. E. Isolation, characterization, and amino acid sequences of auracyanins, blue copper proteins from the green photosynthetic bacterium Chloroflexus aurantiacus. J Biol Chem. 1992 Apr 5;267(10):6531–6540. [PubMed] [Google Scholar]
  31. Meyer T. E., Zhao Z. G., Cusanovich M. A., Tollin G. Transient kinetics of electron transfer from a variety of c-type cytochromes to plastocyanin. Biochemistry. 1993 May 4;32(17):4552–4559. doi: 10.1021/bi00068a010. [DOI] [PubMed] [Google Scholar]
  32. Miyake S., Emori Y., Suzuki K. Gene organization of the small subunit of human calcium-activated neutral protease. Nucleic Acids Res. 1986 Nov 25;14(22):8805–8817. doi: 10.1093/nar/14.22.8805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Modi S., Nordling M., Lundberg L. G., Hansson O., Bendall D. S. Reactivity of cytochromes c and f with mutant forms of spinach plastocyanin. Biochim Biophys Acta. 1992 Aug 28;1102(1):85–90. doi: 10.1016/0005-2728(92)90068-d. [DOI] [PubMed] [Google Scholar]
  34. Murphy M. E., Lindley P. F., Adman E. T. Structural comparison of cupredoxin domains: domain recycling to construct proteins with novel functions. Protein Sci. 1997 Apr;6(4):761–770. doi: 10.1002/pro.5560060402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Norris G. E., Anderson B. F., Baker E. N. Structure of azurin from Alcaligenes denitrificans at 2.5 A resolution. J Mol Biol. 1983 Apr 15;165(3):501–521. doi: 10.1016/s0022-2836(83)80216-2. [DOI] [PubMed] [Google Scholar]
  36. Rydén L. G., Hunt L. T. Evolution of protein complexity: the blue copper-containing oxidases and related proteins. J Mol Evol. 1993 Jan;36(1):41–66. doi: 10.1007/BF02407305. [DOI] [PubMed] [Google Scholar]
  37. Schubert W. D., Klukas O., Saenger W., Witt H. T., Fromme P., Krauss N. A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J Mol Biol. 1998 Jul 10;280(2):297–314. doi: 10.1006/jmbi.1998.1824. [DOI] [PubMed] [Google Scholar]
  38. Van Beeumen J., Van Bun S., Canters G. W., Lommen A., Chothia C. The structural homology of amicyanin from Thiobacillus versutus to plant plastocyanins. J Biol Chem. 1991 Mar 15;266(8):4869–4877. [PubMed] [Google Scholar]
  39. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Woese C. The universal ancestor. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6854–6859. doi: 10.1073/pnas.95.12.6854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. van Spanning R. J., Wansell C. W., Reijnders W. N., Oltmann L. F., Stouthamer A. H. Mutagenesis of the gene encoding amicyanin of Paracoccus denitrificans and the resultant effect on methylamine oxidation. FEBS Lett. 1990 Nov 26;275(1-2):217–220. doi: 10.1016/0014-5793(90)81475-4. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES