Abstract
Protein SRP54 is an essential component of eukaryotic signal recognition particle (SRP). The methionine-rich M-domain (SRP54M or 54M) interacts with the SRP RNA and is also involved in the binding to signal peptides of secretory proteins during their targeting to cellular membranes. To gain insight into the molecular details of SRP-mediated protein targeting, we studied the human 54M polypeptide. The recombinant human protein was expressed successfully in Escherichia coli and was purified to homogeneity. Our studies determined the sites that were susceptible to limited proteolysis, with the goal to design smaller functional mutant derivatives that lacked nonessential amino acid residues from both termini. Of the four polypeptides produced by V8 protease or chymotrypsin, 54MM-2 was the shortest (120 residues; Mr = 13,584.8), but still contained the conserved amino acids suggested to associate with the signal peptide or the SRP RNA. 54MM-2 was cloned, expressed, purified to homogeneity, and was shown to bind human SRP RNA in the presence of protein SRP19, indicating that it was functional. Highly reproducible conditions for the crystallization of 54MM-2 were established. Examination of the crystals by X-ray diffraction showed an orthorhombic unit cell of dimensions a = 29.127 A, b = 63.693 A, and c = 129.601 A, in space group P2(1)2(1)2(1), with reflections extending to at least 2.0 A.
Full Text
The Full Text of this article is available as a PDF (661.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Althoff S., Selinger D., Wise J. A. Molecular evolution of SRP cycle components: functional implications. Nucleic Acids Res. 1994 Jun 11;22(11):1933–1947. doi: 10.1093/nar/22.11.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andrews D. W., Walter P., Ottensmeyer F. P. Evidence for an extended 7SL RNA structure in the signal recognition particle. EMBO J. 1987 Nov;6(11):3471–3477. doi: 10.1002/j.1460-2075.1987.tb02671.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernstein H. D., Poritz M. A., Strub K., Hoben P. J., Brenner S., Walter P. Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle. Nature. 1989 Aug 10;340(6233):482–486. doi: 10.1038/340482a0. [DOI] [PubMed] [Google Scholar]
- Bernstein H. D., Zopf D., Freymann D. M., Walter P. Functional substitution of the signal recognition particle 54-kDa subunit by its Escherichia coli homolog. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5229–5233. doi: 10.1073/pnas.90.11.5229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Black S. D., Gowda K., Chittenden K., Walker K. P., 3rd, Zwieb C. Identification of an RNA-binding-loop in the N-terminal region of signal-recognition-particle protein SRP19. Eur J Biochem. 1997 May 1;245(3):564–572. doi: 10.1111/j.1432-1033.1997.00564.x. [DOI] [PubMed] [Google Scholar]
- Czarnota G. J., Andrews D. W., Farrow N. A., Ottensmeyer F. P. A structure for the signal sequence binding protein SRP54: 3D reconstruction from STEM images of single molecules. J Struct Biol. 1994 Jul-Aug;113(1):35–46. doi: 10.1006/jsbi.1994.1030. [DOI] [PubMed] [Google Scholar]
- Freymann D. M., Keenan R. J., Stroud R. M., Walter P. Structure of the conserved GTPase domain of the signal recognition particle. Nature. 1997 Jan 23;385(6614):361–364. doi: 10.1038/385361a0. [DOI] [PubMed] [Google Scholar]
- Gowda K., Black S. D., Moeller I., Sakakibara Y., Liu M. C., Zwieb C. Protein SRP54 of human signal recognition particle: cloning, expression, and comparative analysis of functional sites. Gene. 1998 Jan 30;207(2):197–207. doi: 10.1016/s0378-1119(97)00627-6. [DOI] [PubMed] [Google Scholar]
- Gowda K., Chittenden K., Zwieb C. Binding site of the M-domain of human protein SRP54 determined by systematic site-directed mutagenesis of signal recognition particle RNA. Nucleic Acids Res. 1997 Jan 15;25(2):388–394. doi: 10.1093/nar/25.2.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gowda K., Zwieb C. Determinants of a protein-induced RNA switch in the large domain of signal recognition particle identified by systematic-site directed mutagenesis. Nucleic Acids Res. 1997 Jul 15;25(14):2835–2840. doi: 10.1093/nar/25.14.2835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keenan R. J., Freymann D. M., Walter P., Stroud R. M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell. 1998 Jul 24;94(2):181–191. doi: 10.1016/s0092-8674(00)81418-x. [DOI] [PubMed] [Google Scholar]
- Kurita K., Honda K., Suzuma S., Takamatsu H., Nakamura K., Yamane K. Identification of a region of Bacillus subtilis Ffh, a homologue of mammalian SRP54 protein, that is essential for binding to small cytoplasmic RNA. J Biol Chem. 1996 May 31;271(22):13140–13146. doi: 10.1074/jbc.271.22.13140. [DOI] [PubMed] [Google Scholar]
- Larsen N., Zwieb C. SRP-RNA sequence alignment and secondary structure. Nucleic Acids Res. 1991 Jan 25;19(2):209–215. doi: 10.1093/nar/19.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewin B. The best of molecular biology. Mol Cell. 1997 Dec;1(1):1–1. doi: 10.1016/s1097-2765(00)80001-5. [DOI] [PubMed] [Google Scholar]
- Lingelbach K., Zwieb C., Webb J. R., Marshallsay C., Hoben P. J., Walter P., Dobberstein B. Isolation and characterization of a cDNA clone encoding the 19 kDa protein of signal recognition particle (SRP): expression and binding to 7SL RNA. Nucleic Acids Res. 1988 Oct 25;16(20):9431–9442. doi: 10.1093/nar/16.20.9431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lütcke H., High S., Römisch K., Ashford A. J., Dobberstein B. The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences. EMBO J. 1992 Apr;11(4):1543–1551. doi: 10.1002/j.1460-2075.1992.tb05199.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lütcke H. Signal recognition particle (SRP), a ubiquitous initiator of protein translocation. Eur J Biochem. 1995 Mar 15;228(3):531–550. doi: 10.1111/j.1432-1033.1995.tb20293.x. [DOI] [PubMed] [Google Scholar]
- Montoya G., Svensson C., Luirink J., Sinning I. Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature. 1997 Jan 23;385(6614):365–368. doi: 10.1038/385365a0. [DOI] [PubMed] [Google Scholar]
- Newitt J. A., Bernstein H. D. The N-domain of the signal recognition particle 54-kDa subunit promotes efficient signal sequence binding. Eur J Biochem. 1997 May 1;245(3):720–729. doi: 10.1111/j.1432-1033.1997.00720.x. [DOI] [PubMed] [Google Scholar]
- Phillips G. J., Silhavy T. J. The E. coli ffh gene is necessary for viability and efficient protein export. Nature. 1992 Oct 22;359(6397):744–746. doi: 10.1038/359744a0. [DOI] [PubMed] [Google Scholar]
- Römisch K., Webb J., Lingelbach K., Gausepohl H., Dobberstein B. The 54-kD protein of signal recognition particle contains a methionine-rich RNA binding domain. J Cell Biol. 1990 Nov;111(5 Pt 1):1793–1802. doi: 10.1083/jcb.111.5.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegel V., Walter P. Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: analysis of biochemical mutants of SRP. Cell. 1988 Jan 15;52(1):39–49. doi: 10.1016/0092-8674(88)90529-6. [DOI] [PubMed] [Google Scholar]
- Steitz T. A., Ohlendorf D. H., McKay D. B., Anderson W. F., Matthews B. W. Structural similarity in the DNA-binding domains of catabolite gene activator and cro repressor proteins. Proc Natl Acad Sci U S A. 1982 May;79(10):3097–3100. doi: 10.1073/pnas.79.10.3097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van de Peer Y., Caers A., De Rijk P., De Wachter R. Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res. 1998 Jan 1;26(1):179–182. [PMC free article] [PubMed] [Google Scholar]
- Walker K. P., 3rd, Black S. D., Zwieb C. Cooperative assembly of signal recognition particle RNA with protein SRP19. Biochemistry. 1995 Sep 19;34(37):11989–11997. doi: 10.1021/bi00037a041. [DOI] [PubMed] [Google Scholar]
- Walter P., Blobel G. Disassembly and reconstitution of signal recognition particle. Cell. 1983 Sep;34(2):525–533. doi: 10.1016/0092-8674(83)90385-9. [DOI] [PubMed] [Google Scholar]
- Zheng N., Gierasch L. M. Signal sequences: the same yet different. Cell. 1996 Sep 20;86(6):849–852. doi: 10.1016/s0092-8674(00)80159-2. [DOI] [PubMed] [Google Scholar]
- Zopf D., Bernstein H. D., Walter P. GTPase domain of the 54-kD subunit of the mammalian signal recognition particle is required for protein translocation but not for signal sequence binding. J Cell Biol. 1993 Mar;120(5):1113–1121. doi: 10.1083/jcb.120.5.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zwieb C. Interaction of protein SRP19 with signal recognition particle RNA lacking individual RNA-helices. Nucleic Acids Res. 1991 Jun 11;19(11):2955–2960. doi: 10.1093/nar/19.11.2955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zwieb C., Müller F., Larsen N. Comparative analysis of tertiary structure elements in signal recognition particle RNA. Fold Des. 1996;1(4):315–324. doi: 10.1016/S1359-0278(96)00044-2. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]
