Abstract
At least four mRNAs for oat phytochrome A (phyA) are present in etiolated oat tissue. The complete amino acid sequences of two phyA isoforms (A3 and A4) and the N-terminal amino acid sequence of a third isoform (A5) were deduced from cDNA sequencing (Hershey et al., 1985). In the present study, heterogeneity of phyA on a protein level was studied by tryptic mapping using electrospray ionization mass-spectrometry (ESIMS). The total tryptic digest of iodoacetamide-modified phyA was fractionated by gel filtration chromatography followed by reversed-phase high-performance liquid chromatography. ESIMS was used to identify peptides. Amino acid sequences of the peptides were confirmed or determined by collision-induced dissociation mass spectrometry (CID MS), MS/MS, or by subdigestion of the tryptic peptides followed by ESIMS analysis. More than 97% of the phyA3 sequence (1,128 amino acid residues) was determined in the present study. Mass-spectrometric analysis of peptides unique to each form showed that phyA purified from etiolated oat seedling is represented by three isoforms A5, A3, and A4, with ratio 3.4:2.3:1.0. Possible light-induced changes in phytochrome in vivo phosphorylation site at Ser7 (Lapko VN et al., 1997, Biochemistry 36:10595-10599) as well at Ser17 and Ser598 (known as in vitro phosphorylation sites) were also analyzed. The extent of phosphorylation at Ser7 appears to be the same for phyA isolated from dark-grown and red-light illuminated seedlings. In addition to Ser7, Ser598 was identified as an in vivo phosphorylation site in oat phyA. Ser598 phosphorylation was found only in phyA from the red light-treated seedlings, suggesting that the protein phosphorylation plays a functional role in the phytochrome A-mediated light-signal transduction.
Full Text
The Full Text of this article is available as a PDF (655.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biemann K. Appendix 5. Nomenclature for peptide fragment ions (positive ions). Methods Enzymol. 1990;193:886–887. doi: 10.1016/0076-6879(90)93460-3. [DOI] [PubMed] [Google Scholar]
- Elich T. D., Chory J. Phytochrome: if it looks and smells like a histidine kinase, is it a histidine kinase? Cell. 1997 Dec 12;91(6):713–716. doi: 10.1016/s0092-8674(00)80458-4. [DOI] [PubMed] [Google Scholar]
- Emmler K., Stockhaus J., Chua N. H., Schäfer E. An amino-terminal deletion of rice phytochrome A results in a dominant negative suppression of tobacco phytochrome A activity in transgenic tobacco seedlings. Planta. 1995;197(1):103–110. doi: 10.1007/BF00239945. [DOI] [PubMed] [Google Scholar]
- Gallagher S., Short T. W., Ray P. M., Pratt L. H., Briggs W. R. Light-mediated changes in two proteins found associated with plasma membrane fractions from pea stem sections. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8003–8007. doi: 10.1073/pnas.85.21.8003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimm R., Eckerskorn C. Expression of AP 3, 4 and 5 isophytochromes in etiolated oat seedlings (Avena sativa L.). Photochem Photobiol. 1991 May;53(5):699–700. doi: 10.1111/j.1751-1097.1991.tb08499.x. [DOI] [PubMed] [Google Scholar]
- Hargrave P. A., McDowell J. H. Rhodopsin and phototransduction: a model system for G protein-linked receptors. FASEB J. 1992 Mar;6(6):2323–2331. doi: 10.1096/fasebj.6.6.1544542. [DOI] [PubMed] [Google Scholar]
- Hershey H. P., Barker R. F., Idler K. B., Lissemore J. L., Quail P. H. Analysis of cloned cDNA and genomic sequences for phytochrome: complete amino acid sequences for two gene products expressed in etiolated Avena. Nucleic Acids Res. 1985 Dec 9;13(23):8543–8559. doi: 10.1093/nar/13.23.8543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jordan E. T., Cherry J. R., Walker J. M., Vierstra R. D. The amino-terminus of phytochrome A contains two distinct functional domains. Plant J. 1996 Feb;9(2):243–257. doi: 10.1046/j.1365-313x.1996.09020243.x. [DOI] [PubMed] [Google Scholar]
- Kim I. S., Bai U., Song P. S. A purified 124-kDa oat phytochrome does not possess a protein kinase activity. Photochem Photobiol. 1989 Mar;49(3):319–323. doi: 10.1111/j.1751-1097.1989.tb04113.x. [DOI] [PubMed] [Google Scholar]
- Lapko V. N., Jiang X. Y., Smith D. L., Song P. S. Posttranslational modification of oat phytochrome A: phosphorylation of a specific serine in a multiple serine cluster. Biochemistry. 1997 Aug 26;36(34):10595–10599. doi: 10.1021/bi970708z. [DOI] [PubMed] [Google Scholar]
- Lapko V. N., Jiang X. Y., Smith D. L., Song P. S. Surface topography of phytochrome A deduced from specific chemical modification with iodoacetamide. Biochemistry. 1998 Sep 8;37(36):12526–12535. doi: 10.1021/bi980834i. [DOI] [PubMed] [Google Scholar]
- Lapko V. N., Song P. S. A simple and improved method of isolation and purification for native oat phytochrome. Photochem Photobiol. 1995 Jul;62(1):194–198. doi: 10.1111/j.1751-1097.1995.tb05258.x. [DOI] [PubMed] [Google Scholar]
- Lapko V. N., Wells T. A., Song P. S. Protein kinase A-catalyzed phosphorylation and its effect on conformation in phytochrome A. Biochemistry. 1996 May 28;35(21):6585–6594. doi: 10.1021/bi9529364. [DOI] [PubMed] [Google Scholar]
- McMichael R. W., Jr, Lagarias J. C. Phosphopeptide mapping of Avena phytochrome phosphorylated by protein kinases in vitro. Biochemistry. 1990 Apr 24;29(16):3872–3878. doi: 10.1021/bi00468a011. [DOI] [PubMed] [Google Scholar]
- Ohguro H., Rudnicka-Nawrot M., Buczyłko J., Zhao X., Taylor J. A., Walsh K. A., Palczewski K. Structural and enzymatic aspects of rhodopsin phosphorylation. J Biol Chem. 1996 Mar 1;271(9):5215–5224. doi: 10.1074/jbc.271.9.5215. [DOI] [PubMed] [Google Scholar]
- Ohguro H., Van Hooser J. P., Milam A. H., Palczewski K. Rhodopsin phosphorylation and dephosphorylation in vivo. J Biol Chem. 1995 Jun 16;270(24):14259–14262. doi: 10.1074/jbc.270.24.14259. [DOI] [PubMed] [Google Scholar]
- Park M. H., Chae Q. Intracellular protein phosphorylation in oat (Avena sativa L.) protoplasts by phytochrome action. 1. Measurement of action spectra for the protein phosphorylation. Biochem Biophys Res Commun. 1989 Jul 14;162(1):9–14. doi: 10.1016/0006-291x(89)91954-2. [DOI] [PubMed] [Google Scholar]
- Quail P. H., Boylan M. T., Parks B. M., Short T. W., Xu Y., Wagner D. Phytochromes: photosensory perception and signal transduction. Science. 1995 May 5;268(5211):675–680. doi: 10.1126/science.7732376. [DOI] [PubMed] [Google Scholar]
- Quail P. H. Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu Rev Genet. 1991;25:389–409. doi: 10.1146/annurev.ge.25.120191.002133. [DOI] [PubMed] [Google Scholar]
- Romero L. C., Biswal B., Song P. S. Protein phosphorylation in isolated nuclei from etiolated Avena seedlings. Effects of red/far-red light and cholera toxin. FEBS Lett. 1991 May 6;282(2):347–350. doi: 10.1016/0014-5793(91)80510-a. [DOI] [PubMed] [Google Scholar]
- Schneider-Poetsch H. A., Braun B., Marx S., Schaumburg A. Phytochromes and bacterial sensor proteins are related by structural and functional homologies. Hypothesis on phytochrome-mediated signal-transduction. FEBS Lett. 1991 Apr 9;281(1-2):245–249. doi: 10.1016/0014-5793(91)80403-p. [DOI] [PubMed] [Google Scholar]
- Sharrock R. A., Quail P. H. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 1989 Nov;3(11):1745–1757. doi: 10.1101/gad.3.11.1745. [DOI] [PubMed] [Google Scholar]
- Somers D. E., Sharrock R. A., Tepperman J. M., Quail P. H. The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell. 1991 Dec;3(12):1263–1274. doi: 10.1105/tpc.3.12.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stockhaus J., Nagatani A., Halfter U., Kay S., Furuya M., Chua N. H. Serine-to-alanine substitutions at the amino-terminal region of phytochrome A result in an increase in biological activity. Genes Dev. 1992 Dec;6(12A):2364–2372. doi: 10.1101/gad.6.12a.2364. [DOI] [PubMed] [Google Scholar]
- Sühnel J., Hermann G., Dornberger U., Fritzsche H. Computer analysis of phytochrome sequences and reevaluation of the phytochrome secondary structure by Fourier transform infrared spectroscopy. Biochim Biophys Acta. 1997 Jul 18;1340(2):253–267. doi: 10.1016/s0167-4838(97)00050-2. [DOI] [PubMed] [Google Scholar]
- Wong Y. S., Cheng H. C., Walsh D. A., Lagarias J. C. Phosphorylation of Avena phytochrome in vitro as a probe of light-induced conformational changes. J Biol Chem. 1986 Sep 15;261(26):12089–12097. [PubMed] [Google Scholar]