Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jun;8(6):1166–1180. doi: 10.1110/ps.8.6.1166

Polymer principles and protein folding.

K A Dill 1
PMCID: PMC2144345  PMID: 10386867

Abstract

This paper surveys the emerging role of statistical mechanics and polymer theory in protein folding. In the polymer perspective, the folding code is more a solvation code than a code of local phipsi propensities. The polymer perspective resolves two classic puzzles: (1) the Blind Watchmaker's Paradox that biological proteins could not have originated from random sequences, and (2) Levinthal's Paradox that the folded state of a protein cannot be found by random search. Both paradoxes are traditionally framed in terms of random unguided searches through vast spaces, and vastness is equated with impossibility. But both processes are partly guided. The searches are more akin to balls rolling down funnels than balls rolling aimlessly on flat surfaces. In both cases, the vastness of the search is largely irrelevant to the search time and success. These ideas are captured by energy and fitness landscapes. Energy landscapes give a language for bridging between microscopics and macroscopics, for relating folding kinetics to equilibrium fluctuations, and for developing new and faster computational search strategies.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anfinsen C. B., Scheraga H. A. Experimental and theoretical aspects of protein folding. Adv Protein Chem. 1975;29:205–300. doi: 10.1016/s0065-3233(08)60413-1. [DOI] [PubMed] [Google Scholar]
  2. Aurora R., Creamer T. P., Srinivasan R., Rose G. D. Local interactions in protein folding: lessons from the alpha-helix. J Biol Chem. 1997 Jan 17;272(3):1413–1416. doi: 10.1074/jbc.272.3.1413. [DOI] [PubMed] [Google Scholar]
  3. Baldwin R. L. Protein folding. Matching speed and stability. Nature. 1994 May 19;369(6477):183–184. doi: 10.1038/369183a0. [DOI] [PubMed] [Google Scholar]
  4. Baldwin R. L., Rose G. D. Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem Sci. 1999 Jan;24(1):26–33. doi: 10.1016/s0968-0004(98)01346-2. [DOI] [PubMed] [Google Scholar]
  5. Baldwin R. L., Rose G. D. Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem Sci. 1999 Feb;24(2):77–83. doi: 10.1016/s0968-0004(98)01345-0. [DOI] [PubMed] [Google Scholar]
  6. Baldwin R. L. The nature of protein folding pathways: the classical versus the new view. J Biomol NMR. 1995 Feb;5(2):103–109. doi: 10.1007/BF00208801. [DOI] [PubMed] [Google Scholar]
  7. Ballew R. M., Sabelko J., Gruebele M. Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5759–5764. doi: 10.1073/pnas.93.12.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ballew R. M., Sabelko J., Gruebele M. Observation of distinct nanosecond and microsecond protein folding events. Nat Struct Biol. 1996 Nov;3(11):923–926. doi: 10.1038/nsb1196-923. [DOI] [PubMed] [Google Scholar]
  9. Bowie J. U., Reidhaar-Olson J. F., Lim W. A., Sauer R. T. Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science. 1990 Mar 16;247(4948):1306–1310. doi: 10.1126/science.2315699. [DOI] [PubMed] [Google Scholar]
  10. Bromberg S., Dill K. A. Side-chain entropy and packing in proteins. Protein Sci. 1994 Jul;3(7):997–1009. doi: 10.1002/pro.5560030702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bryngelson J. D., Onuchic J. N., Socci N. D., Wolynes P. G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins. 1995 Mar;21(3):167–195. doi: 10.1002/prot.340210302. [DOI] [PubMed] [Google Scholar]
  12. Bryngelson J. D., Wolynes P. G. Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7524–7528. doi: 10.1073/pnas.84.21.7524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Burton R. E., Huang G. S., Daugherty M. A., Calderone T. L., Oas T. G. The energy landscape of a fast-folding protein mapped by Ala-->Gly substitutions. Nat Struct Biol. 1997 Apr;4(4):305–310. doi: 10.1038/nsb0497-305. [DOI] [PubMed] [Google Scholar]
  14. Camacho C. J., Thirumalai D. Kinetics and thermodynamics of folding in model proteins. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6369–6372. doi: 10.1073/pnas.90.13.6369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chan C. K., Hu Y., Takahashi S., Rousseau D. L., Eaton W. A., Hofrichter J. Submillisecond protein folding kinetics studied by ultrarapid mixing. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1779–1784. doi: 10.1073/pnas.94.5.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chan H. S., Dill K. A. Protein folding in the landscape perspective: chevron plots and non-Arrhenius kinetics. Proteins. 1998 Jan;30(1):2–33. doi: 10.1002/(sici)1097-0134(19980101)30:1<2::aid-prot2>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  17. Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dill K. A., Chan H. S. From Levinthal to pathways to funnels. Nat Struct Biol. 1997 Jan;4(1):10–19. doi: 10.1038/nsb0197-10. [DOI] [PubMed] [Google Scholar]
  19. Dill K. A., Fiebig K. M., Chan H. S. Cooperativity in protein-folding kinetics. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1942–1946. doi: 10.1073/pnas.90.5.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dill K. A., Phillips A. T., Rosen J. B. Protein structure and energy landscape dependence on sequence using a continuous energy function. J Comput Biol. 1997 Fall;4(3):227–239. doi: 10.1089/cmb.1997.4.227. [DOI] [PubMed] [Google Scholar]
  21. Dill K. A. Theory for the folding and stability of globular proteins. Biochemistry. 1985 Mar 12;24(6):1501–1509. doi: 10.1021/bi00327a032. [DOI] [PubMed] [Google Scholar]
  22. Eisenberg D., Weiss R. M., Terwilliger T. C. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci U S A. 1984 Jan;81(1):140–144. doi: 10.1073/pnas.81.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
  24. Gassner N. C., Baase W. A., Matthews B. W. A test of the "jigsaw puzzle" model for protein folding by multiple methionine substitutions within the core of T4 lysozyme. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12155–12158. doi: 10.1073/pnas.93.22.12155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gilmanshin R., Callender R. H., Dyer R. B. The core of apomyoglobin E-form folds at the diffusion limit. Nat Struct Biol. 1998 May;5(5):363–365. doi: 10.1038/nsb0598-363. [DOI] [PubMed] [Google Scholar]
  26. Gilmanshin R., Williams S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: relaxation dynamics and structure of the I form of apomyoglobin. Biochemistry. 1997 Dec 2;36(48):15006–15012. doi: 10.1021/bi970634r. [DOI] [PubMed] [Google Scholar]
  27. Gilmanshin R., Williams S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3709–3713. doi: 10.1073/pnas.94.8.3709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hamada D., Segawa S., Goto Y. Non-native alpha-helical intermediate in the refolding of beta-lactoglobulin, a predominantly beta-sheet protein. Nat Struct Biol. 1996 Oct;3(10):868–873. doi: 10.1038/nsb1096-868. [DOI] [PubMed] [Google Scholar]
  29. Harrison S. C., Durbin R. Is there a single pathway for the folding of a polypeptide chain? Proc Natl Acad Sci U S A. 1985 Jun;82(12):4028–4030. doi: 10.1073/pnas.82.12.4028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Honig B, Cohen FE. Adding backbone to protein folding: why proteins are polypeptides. Fold Des. 1995;1(1):R17–R20. [PubMed] [Google Scholar]
  31. Huang G. S., Oas T. G. Submillisecond folding of monomeric lambda repressor. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6878–6882. doi: 10.1073/pnas.92.15.6878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  33. KENDREW J. C., BODO G., DINTZIS H. M., PARRISH R. G., WYCKOFF H., PHILLIPS D. C. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature. 1958 Mar 8;181(4610):662–666. doi: 10.1038/181662a0. [DOI] [PubMed] [Google Scholar]
  34. Kabsch W., Sander C. On the use of sequence homologies to predict protein structure: identical pentapeptides can have completely different conformations. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1075–1078. doi: 10.1073/pnas.81.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kamtekar S., Schiffer J. M., Xiong H., Babik J. M., Hecht M. H. Protein design by binary patterning of polar and nonpolar amino acids. Science. 1993 Dec 10;262(5140):1680–1685. doi: 10.1126/science.8259512. [DOI] [PubMed] [Google Scholar]
  36. Karplus M. The Levinthal paradox: yesterday and today. Fold Des. 1997;2(4):S69–S75. doi: 10.1016/s1359-0278(97)00067-9. [DOI] [PubMed] [Google Scholar]
  37. Karplus M., Weaver D. L. Protein-folding dynamics. Nature. 1976 Apr 1;260(5550):404–406. doi: 10.1038/260404a0. [DOI] [PubMed] [Google Scholar]
  38. Kim P. S., Baldwin R. L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem. 1982;51:459–489. doi: 10.1146/annurev.bi.51.070182.002331. [DOI] [PubMed] [Google Scholar]
  39. Kuroda Y., Hamada D., Tanaka T., Goto Y. High helicity of peptide fragments corresponding to beta-strand regions of beta-lactoglobulin observed by 2D-NMR spectroscopy. Fold Des. 1996;1(4):255–263. doi: 10.1016/s1359-0278(96)00039-9. [DOI] [PubMed] [Google Scholar]
  40. Lau K. F., Dill K. A. Theory for protein mutability and biogenesis. Proc Natl Acad Sci U S A. 1990 Jan;87(2):638–642. doi: 10.1073/pnas.87.2.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lazar G. A., Desjarlais J. R., Handel T. M. De novo design of the hydrophobic core of ubiquitin. Protein Sci. 1997 Jun;6(6):1167–1178. doi: 10.1002/pro.5560060605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Lazaridis T., Karplus M. "New view" of protein folding reconciled with the old through multiple unfolding simulations. Science. 1997 Dec 12;278(5345):1928–1931. doi: 10.1126/science.278.5345.1928. [DOI] [PubMed] [Google Scholar]
  43. Lee S. Y., Karplus M., Bashford D., Weaver D. Brownian dynamics simulation of protein folding: a study of the diffusion-collision model. Biopolymers. 1987 Apr;26(4):481–506. doi: 10.1002/bip.360260404. [DOI] [PubMed] [Google Scholar]
  44. Lim W. A., Farruggio D. C., Sauer R. T. Structural and energetic consequences of disruptive mutations in a protein core. Biochemistry. 1992 May 5;31(17):4324–4333. doi: 10.1021/bi00132a025. [DOI] [PubMed] [Google Scholar]
  45. Lim W. A., Sauer R. T. The role of internal packing interactions in determining the structure and stability of a protein. J Mol Biol. 1991 May 20;219(2):359–376. doi: 10.1016/0022-2836(91)90570-v. [DOI] [PubMed] [Google Scholar]
  46. Lipman D. J., Wilbur W. J. Modelling neutral and selective evolution of protein folding. Proc Biol Sci. 1991 Jul 22;245(1312):7–11. doi: 10.1098/rspb.1991.0081. [DOI] [PubMed] [Google Scholar]
  47. Matthews B. W. Structural and genetic analysis of protein stability. Annu Rev Biochem. 1993;62:139–160. doi: 10.1146/annurev.bi.62.070193.001035. [DOI] [PubMed] [Google Scholar]
  48. Miller D. W., Dill K. A. A statistical mechanical model for hydrogen exchange in globular proteins. Protein Sci. 1995 Sep;4(9):1860–1873. doi: 10.1002/pro.5560040921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Miller D. W., Dill K. A. Ligand binding to proteins: the binding landscape model. Protein Sci. 1997 Oct;6(10):2166–2179. doi: 10.1002/pro.5560061011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Minor D. L., Jr, Kim P. S. Context is a major determinant of beta-sheet propensity. Nature. 1994 Sep 15;371(6494):264–267. doi: 10.1038/371264a0. [DOI] [PubMed] [Google Scholar]
  51. Mirsky A. E., Pauling L. On the Structure of Native, Denatured, and Coagulated Proteins. Proc Natl Acad Sci U S A. 1936 Jul;22(7):439–447. doi: 10.1073/pnas.22.7.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Munson M., Balasubramanian S., Fleming K. G., Nagi A. D., O'Brien R., Sturtevant J. M., Regan L. What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties. Protein Sci. 1996 Aug;5(8):1584–1593. doi: 10.1002/pro.5560050813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Munson M., O'Brien R., Sturtevant J. M., Regan L. Redesigning the hydrophobic core of a four-helix-bundle protein. Protein Sci. 1994 Nov;3(11):2015–2022. doi: 10.1002/pro.5560031114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Onuchic J. N., Luthey-Schulten Z., Wolynes P. G. Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem. 1997;48:545–600. doi: 10.1146/annurev.physchem.48.1.545. [DOI] [PubMed] [Google Scholar]
  55. PAULING L., COREY R. B. Atomic coordinates and structure factors for two helical configurations of polypeptide chains. Proc Natl Acad Sci U S A. 1951 May;37(5):235–240. doi: 10.1073/pnas.37.5.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. PAULING L., COREY R. B., BRANSON H. R. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A. 1951 Apr;37(4):205–211. doi: 10.1073/pnas.37.4.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. PAULING L., COREY R. B. The pleated sheet, a new layer configuration of polypeptide chains. Proc Natl Acad Sci U S A. 1951 May;37(5):251–256. doi: 10.1073/pnas.37.5.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. PAULING L., COREY R. B. The structure of fibrous proteins of the collagen-gelatin group. Proc Natl Acad Sci U S A. 1951 May;37(5):272–281. doi: 10.1073/pnas.37.5.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Pande V. S., Grosberg AYu, Tanaka T., Rokhsar D. S. Pathways for protein folding: is a new view needed? Curr Opin Struct Biol. 1998 Feb;8(1):68–79. doi: 10.1016/s0959-440x(98)80012-2. [DOI] [PubMed] [Google Scholar]
  60. Pande V. S., Rokhsar D. S. Folding pathway of a lattice model for proteins. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1273–1278. doi: 10.1073/pnas.96.4.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Pascher T., Chesick J. P., Winkler J. R., Gray H. B. Protein folding triggered by electron transfer. Science. 1996 Mar 15;271(5255):1558–1560. doi: 10.1126/science.271.5255.1558. [DOI] [PubMed] [Google Scholar]
  62. Predki P. F., Agrawal V., Brünger A. T., Regan L. Amino-acid substitutions in a surface turn modulate protein stability. Nat Struct Biol. 1996 Jan;3(1):54–58. doi: 10.1038/nsb0196-54. [DOI] [PubMed] [Google Scholar]
  63. Reidhaar-Olson J. F., Sauer R. T. Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science. 1988 Jul 1;241(4861):53–57. doi: 10.1126/science.3388019. [DOI] [PubMed] [Google Scholar]
  64. Riddle D. S., Santiago J. V., Bray-Hall S. T., Doshi N., Grantcharova V. P., Yi Q., Baker D. Functional rapidly folding proteins from simplified amino acid sequences. Nat Struct Biol. 1997 Oct;4(10):805–809. doi: 10.1038/nsb1097-805. [DOI] [PubMed] [Google Scholar]
  65. Schafmeister C. E., LaPorte S. L., Miercke L. J., Stroud R. M. A designed four helix bundle protein with native-like structure. Nat Struct Biol. 1997 Dec;4(12):1039–1046. doi: 10.1038/nsb1297-1039. [DOI] [PubMed] [Google Scholar]
  66. Scholtz J. M., Baldwin R. L. The mechanism of alpha-helix formation by peptides. Annu Rev Biophys Biomol Struct. 1992;21:95–118. doi: 10.1146/annurev.bb.21.060192.000523. [DOI] [PubMed] [Google Scholar]
  67. Shastry M. C., Roder H. Evidence for barrier-limited protein folding kinetics on the microsecond time scale. Nat Struct Biol. 1998 May;5(5):385–392. doi: 10.1038/nsb0598-385. [DOI] [PubMed] [Google Scholar]
  68. Shiraki K., Nishikawa K., Goto Y. Trifluoroethanol-induced stabilization of the alpha-helical structure of beta-lactoglobulin: implication for non-hierarchical protein folding. J Mol Biol. 1995 Jan 13;245(2):180–194. doi: 10.1006/jmbi.1994.0015. [DOI] [PubMed] [Google Scholar]
  69. Smith C. K., Regan L. Guidelines for protein design: the energetics of beta sheet side chain interactions. Science. 1995 Nov 10;270(5238):980–982. doi: 10.1126/science.270.5238.980. [DOI] [PubMed] [Google Scholar]
  70. Tang K. E., Dill K. A. Native protein fluctuations: the conformational-motion temperature and the inverse correlation of protein flexibility with protein stability. J Biomol Struct Dyn. 1998 Oct;16(2):397–411. doi: 10.1080/07391102.1998.10508256. [DOI] [PubMed] [Google Scholar]
  71. Thomas P. D., Dill K. A. Local and nonlocal interactions in globular proteins and mechanisms of alcohol denaturation. Protein Sci. 1993 Dec;2(12):2050–2065. doi: 10.1002/pro.5560021206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Wetlaufer D. B. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci U S A. 1973 Mar;70(3):697–701. doi: 10.1073/pnas.70.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Williams S., Causgrove T. P., Gilmanshin R., Fang K. S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry. 1996 Jan 23;35(3):691–697. doi: 10.1021/bi952217p. [DOI] [PubMed] [Google Scholar]
  74. Wu L. C., Kim P. S. Hydrophobic sequence minimization of the alpha-lactalbumin molten globule. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14314–14319. doi: 10.1073/pnas.94.26.14314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Yapa K., Weaver D. L., Karplus M. Beta-sheet coil transitions in a simple polypeptide model. Proteins. 1992 Mar;12(3):237–265. doi: 10.1002/prot.340120304. [DOI] [PubMed] [Google Scholar]
  76. Yue K., Dill K. A. Forces of tertiary structural organization in globular proteins. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):146–150. doi: 10.1073/pnas.92.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Zwanzig R., Szabo A., Bagchi B. Levinthal's paradox. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):20–22. doi: 10.1073/pnas.89.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES