Abstract
Two equilibrium intermediates have previously been observed in the urea denaturation of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, an eight-stranded beta/alpha barrel protein. In the current study, a series of amino-terminal fragments were characterized to probe the elementary folding units that may be in part responsible for this complex behavior. Stop-codon mutagenesis was used to produce eight fragments ranging in size from 105-214 residues and containing incremental elements of secondary structure. Equilibrium studies by circular dichroism indicate that all of these fragments are capable of adopting secondary structure. All except for the shortest fragment fold cooperatively. The addition of the fourth, sixth, and eighth beta-strands leads to distinct increases in structure, cooperativity, and/or stability, suggesting that folding involves the modular assembly of betaalphabeta supersecondary structural elements. One-dimensional NMR titrations at high concentrations of urea, probing the environment around His92, were also performed to test for the presence of residual structure in the fragments. All fragments that contained the first four betaalpha units of structure exhibited a cooperative unfolding transition at high concentrations of urea with significant but reduced stability relative to the full-length protein. These results suggest that the residual structure in alphaTS requires the participation of hydrophobic residues in multiple beta-strands that span the entire sequence.
Full Text
The Full Text of this article is available as a PDF (640.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreotti G., Cubellis M. V., Palo M. D., Fessas D., Sannia G., Marino G. Stability of a thermophilic TIM-barrel enzyme: indole-3-glycerol phosphate synthase from the thermophilic archaeon Sulfolobus solfataricus. Biochem J. 1997 Apr 1;323(Pt 1):259–264. doi: 10.1042/bj3230259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beasty A. M., Matthews C. R. Characterization of an early intermediate in the folding of the alpha subunit of tryptophan synthase by hydrogen exchange measurement. Biochemistry. 1985 Jul 2;24(14):3547–3553. doi: 10.1021/bi00335a024. [DOI] [PubMed] [Google Scholar]
- Bilsel O., Yang L., Zitzewitz J. A., Beechem J. M., Matthews C. R. Time-resolved fluorescence anisotropy study of the refolding reaction of the alpha-subunit of tryptophan synthase reveals nonmonotonic behavior of the rotational correlation time. Biochemistry. 1999 Mar 30;38(13):4177–4187. doi: 10.1021/bi9829433. [DOI] [PubMed] [Google Scholar]
- Bilsel O., Zitzewitz J. A., Bowers K. E., Matthews C. R. Folding mechanism of the alpha-subunit of tryptophan synthase, an alpha/beta barrel protein: global analysis highlights the interconversion of multiple native, intermediate, and unfolded forms through parallel channels. Biochemistry. 1999 Jan 19;38(3):1018–1029. doi: 10.1021/bi982365q. [DOI] [PubMed] [Google Scholar]
- Chaffotte A. F., Cadieux C., Guillou Y., Goldberg M. E. A possible initial folding intermediate: the C-terminal proteolytic domain of tryptophan synthase beta chains folds in less than 4 milliseconds into a condensed state with non-native-like secondary structure. Biochemistry. 1992 May 5;31(17):4303–4308. doi: 10.1021/bi00132a022. [DOI] [PubMed] [Google Scholar]
- Chaffotte A. F., Guijarro J. I., Guillou Y., Delepierre M., Goldberg M. E. The "pre-molten globule," a new intermediate in protein folding. J Protein Chem. 1997 Jul;16(5):433–439. doi: 10.1023/a:1026397008011. [DOI] [PubMed] [Google Scholar]
- Chaffotte A., Guillou Y., Delepierre M., Hinz H. J., Goldberg M. E. The isolated C-terminal (F2) fragment of the Escherichia coli tryptophan synthase beta 2-subunit folds into a stable, organized nonnative conformation. Biochemistry. 1991 Aug 13;30(32):8067–8074. doi: 10.1021/bi00246a027. [DOI] [PubMed] [Google Scholar]
- Chen X., Matthews C. R. Thermodynamic properties of the transition state for the rate-limiting step in the folding of the alpha subunit of tryptophan synthase. Biochemistry. 1994 May 24;33(20):6356–6362. doi: 10.1021/bi00186a040. [DOI] [PubMed] [Google Scholar]
- Constans A. J., Mayer M. R., Sukits S. F., Lecomte J. T. A test of the relationship between sequence and structure in proteins: excision of the heme binding site in apocytochrome b5. Protein Sci. 1998 Sep;7(9):1983–1993. doi: 10.1002/pro.5560070914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corbett R. J., Roche R. S. Independent folding of autolytic fragments of thermolysin and their domain-like properties. Int J Pept Protein Res. 1986 Dec;28(6):549–559. doi: 10.1111/j.1399-3011.1986.tb03292.x. [DOI] [PubMed] [Google Scholar]
- De Prat Gay G., Ruiz-Sanz J., Neira J. L., Itzhaki L. S., Fersht A. R. Folding of a nascent polypeptide chain in vitro: cooperative formation of structure in a protein module. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3683–3686. doi: 10.1073/pnas.92.9.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eder J., Kirschner K. Stable substructures of eightfold beta alpha-barrel proteins: fragment complementation of phosphoribosylanthranilate isomerase. Biochemistry. 1992 Apr 14;31(14):3617–3625. doi: 10.1021/bi00129a010. [DOI] [PubMed] [Google Scholar]
- Gegg C. V., Bowers K. E., Matthews C. R. Probing minimal independent folding units in dihydrofolate reductase by molecular dissection. Protein Sci. 1997 Sep;6(9):1885–1892. doi: 10.1002/pro.5560060909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
- Godzik A., Skolnick J., Kolinski A. Simulations of the folding pathway of triose phosphate isomerase-type alpha/beta barrel proteins. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2629–2633. doi: 10.1073/pnas.89.7.2629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins W., Fairwell T., Miles E. W. An active proteolytic derivative of the alpha subunit of tryptophan synthase. Identification of the site of cleavage and characterization of the fragments. Biochemistry. 1979 Oct 30;18(22):4827–4835. doi: 10.1021/bi00589a010. [DOI] [PubMed] [Google Scholar]
- Hyde C. C., Ahmed S. A., Padlan E. A., Miles E. W., Davies D. R. Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J Biol Chem. 1988 Nov 25;263(33):17857–17871. [PubMed] [Google Scholar]
- Jaenicke R. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry. 1991 Apr 2;30(13):3147–3161. doi: 10.1021/bi00227a001. [DOI] [PubMed] [Google Scholar]
- Jasanoff A., Davis B., Fersht A. R. Detection of an intermediate in the folding of the (beta alpha)8-barrel N-(5'-phosphoribosyl)anthranilate isomerase from Escherichia coli. Biochemistry. 1994 May 24;33(20):6350–6355. doi: 10.1021/bi00186a039. [DOI] [PubMed] [Google Scholar]
- Jones B. E., Matthews C. R. Early intermediates in the folding of dihydrofolate reductase from Escherichia coli detected by hydrogen exchange and NMR. Protein Sci. 1995 Feb;4(2):167–177. doi: 10.1002/pro.5560040204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamtekar S., Schiffer J. M., Xiong H., Babik J. M., Hecht M. H. Protein design by binary patterning of polar and nonpolar amino acids. Science. 1993 Dec 10;262(5140):1680–1685. doi: 10.1126/science.8259512. [DOI] [PubMed] [Google Scholar]
- Kim P. S., Baldwin R. L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem. 1982;51:459–489. doi: 10.1146/annurev.bi.51.070182.002331. [DOI] [PubMed] [Google Scholar]
- Kippen A. D., Sancho J., Fersht A. R. Folding of barnase in parts. Biochemistry. 1994 Mar 29;33(12):3778–3786. doi: 10.1021/bi00178a039. [DOI] [PubMed] [Google Scholar]
- Kirschner K., Wiskocil R. L., Foehn M., Rezeau L. The tryptophan synthase from Escherichia coli. An improved purification procedure for the alpha-subunit and binding studies with substrate analogues. Eur J Biochem. 1975 Dec 15;60(2):513–523. doi: 10.1111/j.1432-1033.1975.tb21030.x. [DOI] [PubMed] [Google Scholar]
- Kuwajima K., Garvey E. P., Finn B. E., Matthews C. R., Sugai S. Transient intermediates in the folding of dihydrofolate reductase as detected by far-ultraviolet circular dichroism spectroscopy. Biochemistry. 1991 Aug 6;30(31):7693–7703. doi: 10.1021/bi00245a005. [DOI] [PubMed] [Google Scholar]
- Lecomte J. T., Matthews C. R. Unraveling the mechanism of protein folding: new tricks for an old problem. Protein Eng. 1993 Jan;6(1):1–10. doi: 10.1093/protein/6.1.1. [DOI] [PubMed] [Google Scholar]
- Lesk A. M., Brändén C. I., Chothia C. Structural principles of alpha/beta barrel proteins: the packing of the interior of the sheet. Proteins. 1989;5(2):139–148. doi: 10.1002/prot.340050208. [DOI] [PubMed] [Google Scholar]
- Llinás M., Marqusee S. Subdomain interactions as a determinant in the folding and stability of T4 lysozyme. Protein Sci. 1998 Jan;7(1):96–104. doi: 10.1002/pro.5560070110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews C. R., Crisanti M. M. Urea-induced unfolding of the alpha subunit of tryptophan synthase: evidence for a multistate process. Biochemistry. 1981 Feb 17;20(4):784–792. doi: 10.1021/bi00507a021. [DOI] [PubMed] [Google Scholar]
- Miles E. W., Yutani K., Ogasahara K. Guanidine hydrochloride induced unfolding of the alpha subunit of tryptophan synthase and of the two alpha proteolytic fragments: evidence for stepwise unfolding of the two alpha domains. Biochemistry. 1982 May 25;21(11):2586–2592. doi: 10.1021/bi00540a002. [DOI] [PubMed] [Google Scholar]
- Missiakas D., Betton J. M., Minard P., Yon J. M. Unfolding-refolding of the domains in yeast phosphoglycerate kinase: comparison with the isolated engineered domains. Biochemistry. 1990 Sep 18;29(37):8683–8689. doi: 10.1021/bi00489a025. [DOI] [PubMed] [Google Scholar]
- Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neri D., Billeter M., Wider G., Wüthrich K. NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science. 1992 Sep 11;257(5076):1559–1563. doi: 10.1126/science.1523410. [DOI] [PubMed] [Google Scholar]
- Oas T. G., Kim P. S. A peptide model of a protein folding intermediate. Nature. 1988 Nov 3;336(6194):42–48. doi: 10.1038/336042a0. [DOI] [PubMed] [Google Scholar]
- Parrado J., Conejero-Lara F., Smith R. A., Marshall J. M., Ponting C. P., Dobson C. M. The domain organization of streptokinase: nuclear magnetic resonance, circular dichroism, and functional characterization of proteolytic fragments. Protein Sci. 1996 Apr;5(4):693–704. doi: 10.1002/pro.5560050414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng Z. Y., Kim P. S. A protein dissection study of a molten globule. Biochemistry. 1994 Mar 1;33(8):2136–2141. doi: 10.1021/bi00174a021. [DOI] [PubMed] [Google Scholar]
- Saab-Rincón G., Froebe C. L., Matthews C. R. Urea-induced unfolding of the alpha subunit of tryptophan synthase: one-dimensional proton NMR evidence for residual structure near histidine-92 at high denaturant concentration. Biochemistry. 1993 Dec 21;32(50):13981–13990. doi: 10.1021/bi00213a031. [DOI] [PubMed] [Google Scholar]
- Saab-Rincón G., Gualfetti P. J., Matthews C. R. Mutagenic and thermodynamic analyses of residual structure in the alpha subunit of tryptophan synthase. Biochemistry. 1996 Feb 13;35(6):1988–1994. doi: 10.1021/bi951726o. [DOI] [PubMed] [Google Scholar]
- Sarkar G., Sommer S. S. The "megaprimer" method of site-directed mutagenesis. Biotechniques. 1990 Apr;8(4):404–407. [PubMed] [Google Scholar]
- Segel D. J., Fink A. L., Hodgson K. O., Doniach S. Protein denaturation: a small-angle X-ray scattering study of the ensemble of unfolded states of cytochrome c. Biochemistry. 1998 Sep 8;37(36):12443–12451. doi: 10.1021/bi980535t. [DOI] [PubMed] [Google Scholar]
- Sánchez del Pino M. M., Fersht A. R. Nonsequential unfolding of the alpha/beta barrel protein indole-3-glycerol-phosphate synthase. Biochemistry. 1997 May 6;36(18):5560–5565. doi: 10.1021/bi963133z. [DOI] [PubMed] [Google Scholar]
- Tasayco M. L., Carey J. Ordered self-assembly of polypeptide fragments to form nativelike dimeric trp repressor. Science. 1992 Jan 31;255(5044):594–597. doi: 10.1126/science.1736361. [DOI] [PubMed] [Google Scholar]
- Tsai C. J., Nussinov R. Hydrophobic folding units derived from dissimilar monomer structures and their interactions. Protein Sci. 1997 Jan;6(1):24–42. doi: 10.1002/pro.5560060104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsuji T., Chrunyk B. A., Chen X., Matthews C. R. Mutagenic analysis of the interior packing of an alpha/beta barrel protein. Effects on the stabilities and rates of interconversion of the native and partially folded forms of the alpha subunit of tryptophan synthase. Biochemistry. 1993 Jun 1;32(21):5566–5575. doi: 10.1021/bi00072a011. [DOI] [PubMed] [Google Scholar]
- Vuilleumier S., Sancho J., Loewenthal R., Fersht A. R. Circular dichroism studies of barnase and its mutants: characterization of the contribution of aromatic side chains. Biochemistry. 1993 Oct 5;32(39):10303–10313. doi: 10.1021/bi00090a005. [DOI] [PubMed] [Google Scholar]
- Yee M. C., Horn V., Yanofsky C. On the role of helix 0 of the tryptophan synthetase alpha chain of Escherichia coli. J Biol Chem. 1996 Jun 21;271(25):14754–14763. doi: 10.1074/jbc.271.25.14754. [DOI] [PubMed] [Google Scholar]
- Zitzewitz J. A., Bilsel O., Luo J., Jones B. E., Matthews C. R. Probing the folding mechanism of a leucine zipper peptide by stopped-flow circular dichroism spectroscopy. Biochemistry. 1995 Oct 3;34(39):12812–12819. doi: 10.1021/bi00039a042. [DOI] [PubMed] [Google Scholar]
- de Prat-Gay G. Association of complementary fragments and the elucidation of protein folding pathways. Protein Eng. 1996 Oct;9(10):843–847. doi: 10.1093/protein/9.10.843. [DOI] [PubMed] [Google Scholar]
