Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jun;8(6):1292–1304. doi: 10.1110/ps.8.6.1292

Study of the stability and unfolding mechanism of BBA1 by molecular dynamics simulations at different temperatures.

L Wang 1, Y Duan 1, R Shortle 1, B Imperiali 1, P A Kollman 1
PMCID: PMC2144350  PMID: 10386879

Abstract

BBA1 is a designed protein that has only 23 residues. It is the smallest protein without disulfide bridges that has a well-defined tertiary structure in solution. We have performed unfolding molecular dynamics simulations on BBA1 and some of its mutants at 300, 330, 360, and 400 K to study their kinetic stability as well as the unfolding mechanism of BBA1. It was shown that the unfolding simulations can provide insights into the forces that stabilize the protein. Packing, hydrophobic interactions, and a salt bridge between Asp12 and Lys16 were found to be important to the protein's stability. The unfolding of BBA1 goes through two major steps: (1) disruption of the hydrophobic core and (2) unfolding of the helix. The beta-hairpin remains stable in the unfolding because of the high stability of the type II' turn connecting the two beta-strands.

Full Text

The Full Text of this article is available as a PDF (779.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson A. G., Hermans J. Microfolding: conformational probability map for the alanine dipeptide in water from molecular dynamics simulations. Proteins. 1988;3(4):262–265. doi: 10.1002/prot.340030408. [DOI] [PubMed] [Google Scholar]
  2. Berg J. M. Zinc finger domains: hypotheses and current knowledge. Annu Rev Biophys Biophys Chem. 1990;19:405–421. doi: 10.1146/annurev.bb.19.060190.002201. [DOI] [PubMed] [Google Scholar]
  3. Boczko E. M., Brooks C. L., 3rd First-principles calculation of the folding free energy of a three-helix bundle protein. Science. 1995 Jul 21;269(5222):393–396. doi: 10.1126/science.7618103. [DOI] [PubMed] [Google Scholar]
  4. Braxenthaler M., Unger R., Auerbach D., Given J. A., Moult J. Chaos in protein dynamics. Proteins. 1997 Dec;29(4):417–425. [PubMed] [Google Scholar]
  5. Caflisch A., Karplus M. Molecular dynamics simulation of protein denaturation: solvation of the hydrophobic cores and secondary structure of barnase. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1746–1750. doi: 10.1073/pnas.91.5.1746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chothia C. Conformation of twisted beta-pleated sheets in proteins. J Mol Biol. 1973 Apr 5;75(2):295–302. doi: 10.1016/0022-2836(73)90022-3. [DOI] [PubMed] [Google Scholar]
  7. Chou K. C., Némethy G., Scheraga H. A. Role of interchain interactions in the stabilization of the right-handed twist of beta-sheets. J Mol Biol. 1983 Aug 5;168(2):389–407. doi: 10.1016/s0022-2836(83)80025-4. [DOI] [PubMed] [Google Scholar]
  8. Daggett V., Levitt M. Protein unfolding pathways explored through molecular dynamics simulations. J Mol Biol. 1993 Jul 20;232(2):600–619. doi: 10.1006/jmbi.1993.1414. [DOI] [PubMed] [Google Scholar]
  9. Dahiyat B. I., Mayo S. L. De novo protein design: fully automated sequence selection. Science. 1997 Oct 3;278(5335):82–87. doi: 10.1126/science.278.5335.82. [DOI] [PubMed] [Google Scholar]
  10. Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  11. Frankel A. D., Berg J. M., Pabo C. O. Metal-dependent folding of a single zinc finger from transcription factor IIIA. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4841–4845. doi: 10.1073/pnas.84.14.4841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goodsell D. S., Olson A. J. Soluble proteins: size, shape and function. Trends Biochem Sci. 1993 Mar;18(3):65–68. doi: 10.1016/0968-0004(93)90153-e. [DOI] [PubMed] [Google Scholar]
  13. Hirst J. D., Brooks C. L., 3rd Molecular dynamics simulations of isolated helices of myoglobin. Biochemistry. 1995 Jun 13;34(23):7614–7621. doi: 10.1021/bi00023a007. [DOI] [PubMed] [Google Scholar]
  14. Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
  15. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  16. Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
  17. Lazaridis T., Karplus M. "New view" of protein folding reconciled with the old through multiple unfolding simulations. Science. 1997 Dec 12;278(5345):1928–1931. doi: 10.1126/science.278.5345.1928. [DOI] [PubMed] [Google Scholar]
  18. Li A., Daggett V. Identification and characterization of the unfolding transition state of chymotrypsin inhibitor 2 by molecular dynamics simulations. J Mol Biol. 1996 Mar 29;257(2):412–429. doi: 10.1006/jmbi.1996.0172. [DOI] [PubMed] [Google Scholar]
  19. Matthews B. W. Structural and genetic analysis of protein stability. Annu Rev Biochem. 1993;62:139–160. doi: 10.1146/annurev.bi.62.070193.001035. [DOI] [PubMed] [Google Scholar]
  20. McKnight C. J., Matsudaira P. T., Kim P. S. NMR structure of the 35-residue villin headpiece subdomain. Nat Struct Biol. 1997 Mar;4(3):180–184. doi: 10.1038/nsb0397-180. [DOI] [PubMed] [Google Scholar]
  21. Nozaki Y., Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem. 1971 Apr 10;246(7):2211–2217. [PubMed] [Google Scholar]
  22. Pavletich N. P., Pabo C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991 May 10;252(5007):809–817. doi: 10.1126/science.2028256. [DOI] [PubMed] [Google Scholar]
  23. Presta L. G., Rose G. D. Helix signals in proteins. Science. 1988 Jun 17;240(4859):1632–1641. doi: 10.1126/science.2837824. [DOI] [PubMed] [Google Scholar]
  24. Párraga G., Horvath S., Hood L., Young E. T., Klevit R. E. Spectroscopic studies of wild-type and mutant "zinc finger" peptides: determinants of domain folding and structure. Proc Natl Acad Sci U S A. 1990 Jan;87(1):137–141. doi: 10.1073/pnas.87.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  26. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  27. Shaw A., Bott R. Engineering enzymes for stability. Curr Opin Struct Biol. 1996 Aug;6(4):546–550. doi: 10.1016/s0959-440x(96)80122-9. [DOI] [PubMed] [Google Scholar]
  28. Sibanda B. L., Thornton J. M. Beta-hairpin families in globular proteins. Nature. 1985 Jul 11;316(6024):170–174. doi: 10.1038/316170a0. [DOI] [PubMed] [Google Scholar]
  29. Struthers M. D., Cheng R. P., Imperiali B. Design of a monomeric 23-residue polypeptide with defined tertiary structure. Science. 1996 Jan 19;271(5247):342–345. doi: 10.1126/science.271.5247.342. [DOI] [PubMed] [Google Scholar]
  30. Struthers M., Ottesen J. J., Imperiali B. Design and NMR analyses of compact, independently folded BBA motifs. Fold Des. 1998;3(2):95–103. doi: 10.1016/S1359-0278(98)00015-7. [DOI] [PubMed] [Google Scholar]
  31. Tirado-Rives J., Jorgensen W. L. Molecular dynamics simulations of the unfolding of apomyoglobin in water. Biochemistry. 1993 Apr 27;32(16):4175–4184. doi: 10.1021/bi00067a004. [DOI] [PubMed] [Google Scholar]
  32. Tobias D. J., Brooks C. L., 3rd Thermodynamics and mechanism of alpha helix initiation in alanine and valine peptides. Biochemistry. 1991 Jun 18;30(24):6059–6070. doi: 10.1021/bi00238a033. [DOI] [PubMed] [Google Scholar]
  33. Wang L., O'Connell T., Tropsha A., Hermans J. Molecular simulations of beta-sheet twisting. J Mol Biol. 1996 Sep 20;262(2):283–293. doi: 10.1006/jmbi.1996.0513. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES