Abstract
Cytochrome cH is the electron donor to the oxidase in methylotrophic bacteria. Its amino acid sequence suggests that it is a typical Class 1 cytochrome c, but some features of the sequence indicated that its structure might be of special interest. The structure of oxidized cytochrome cH has been solved to 2.0 A resolution by X-ray diffraction. It has the classical tertiary structure of the Class 1 cytochromes c but bears a closer gross resemblance to mitochondrial cytochrome c than to the bacterial cytochrome c2. The left-hand side of the haem cleft is unique; in particular, it is highly hydrophobic, the usual water is absent, and the "conserved" Tyr67 is replaced by tryptophan. A number of features of the structure demonstrate that the usual hydrogen bonding network involving water in the haem channel is not essential and that other mechanisms may exist for modulation of redox potentials in this cytochrome.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anthony C., Ghosh M. The structure and function of the PQQ-containing quinoprotein dehydrogenases. Prog Biophys Mol Biol. 1998;69(1):1–21. doi: 10.1016/s0079-6107(97)00020-5. [DOI] [PubMed] [Google Scholar]
- Anthony C. The c-type cytochromes of methylotrophic bacteria. Biochim Biophys Acta. 1992 Jan 30;1099(1):1–15. [PubMed] [Google Scholar]
- Baistrocchi P., Banci L., Bertini I., Turano P., Bren K. L., Gray H. B. Three-dimensional solution structure of Saccharomyces cerevisiae reduced iso-1-cytochrome c. Biochemistry. 1996 Oct 29;35(43):13788–13796. doi: 10.1021/bi961110e. [DOI] [PubMed] [Google Scholar]
- Banci L., Bertini I., Bren K. L., Gray H. B., Sompornpisut P., Turano P. Solution structure of oxidized Saccharomyces cerevisiae iso-1-cytochrome c. Biochemistry. 1997 Jul 22;36(29):8992–9001. doi: 10.1021/bi963025c. [DOI] [PubMed] [Google Scholar]
- Banci L., Bertini I., Gray H. B., Luchinat C., Reddig T., Rosato A., Turano P. Solution structure of oxidized horse heart cytochrome c. Biochemistry. 1997 Aug 12;36(32):9867–9877. doi: 10.1021/bi970724w. [DOI] [PubMed] [Google Scholar]
- Benning M. M., Meyer T. E., Holden H. M. Molecular structure of a high potential cytochrome c2 isolated from Rhodopila globiformis. Arch Biochem Biophys. 1996 Sep 15;333(2):338–348. doi: 10.1006/abbi.1996.0400. [DOI] [PubMed] [Google Scholar]
- Berghuis A. M., Guillemette J. G., Smith M., Brayer G. D. Mutation of tyrosine-67 to phenylalanine in cytochrome c significantly alters the local heme environment. J Mol Biol. 1994 Jan 28;235(4):1326–1341. doi: 10.1006/jmbi.1994.1086. [DOI] [PubMed] [Google Scholar]
- Bushnell G. W., Louie G. V., Brayer G. D. High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol. 1990 Jul 20;214(2):585–595. doi: 10.1016/0022-2836(90)90200-6. [DOI] [PubMed] [Google Scholar]
- Caffrey M. S., Daldal F., Holden H. M., Cusanovich M. A. Importance of a conserved hydrogen-bonding network in cytochromes c to their redox potentials and stabilities. Biochemistry. 1991 Apr 30;30(17):4119–4125. doi: 10.1021/bi00231a002. [DOI] [PubMed] [Google Scholar]
- Cox J. M., Day D. J., Anthony C. The interaction of methanol dehydrogenase and its electron acceptor, cytochrome cL in methylotrophic bacteria. Biochim Biophys Acta. 1992 Feb 13;1119(1):97–106. doi: 10.1016/0167-4838(92)90240-e. [DOI] [PubMed] [Google Scholar]
- Day D. J., Anthony C. Soluble cytochromes c of methanol-utilizing bacteria. Methods Enzymol. 1990;188:298–303. doi: 10.1016/0076-6879(90)88046-d. [DOI] [PubMed] [Google Scholar]
- Gao X. L., Mirau P., Patel D. J. Structure refinement of the chromomycin dimer-DNA oligomer complex in solution. J Mol Biol. 1992 Jan 5;223(1):259–279. doi: 10.1016/0022-2836(92)90730-8. [DOI] [PubMed] [Google Scholar]
- Ghosh M., Anthony C., Harlos K., Goodwin M. G., Blake C. The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94 A. Structure. 1995 Feb 15;3(2):177–187. doi: 10.1016/s0969-2126(01)00148-4. [DOI] [PubMed] [Google Scholar]
- Kassner R. J. Effects of nonpolar environments on the redox potentials of heme complexes. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2263–2267. doi: 10.1073/pnas.69.8.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitt M., Perutz M. F. Aromatic rings act as hydrogen bond acceptors. J Mol Biol. 1988 Jun 20;201(4):751–754. doi: 10.1016/0022-2836(88)90471-8. [DOI] [PubMed] [Google Scholar]
- Louie G. V., Brayer G. D. High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. J Mol Biol. 1990 Jul 20;214(2):527–555. doi: 10.1016/0022-2836(90)90197-T. [DOI] [PubMed] [Google Scholar]
- Luntz T. L., Schejter A., Garber E. A., Margoliash E. Structural significance of an internal water molecule studied by site-directed mutagenesis of tyrosine-67 in rat cytochrome c. Proc Natl Acad Sci U S A. 1989 May;86(10):3524–3528. doi: 10.1073/pnas.86.10.3524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell J. B., Nandi C. L., McDonald I. K., Thornton J. M., Price S. L. Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding? J Mol Biol. 1994 Jun 3;239(2):315–331. doi: 10.1006/jmbi.1994.1370. [DOI] [PubMed] [Google Scholar]
- O'Keeffe D. T., Anthony C. The two cytochromes c in the facultative methylotroph Pseudomonas am1. Biochem J. 1980 Nov 15;192(2):411–419. doi: 10.1042/bj1920411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Proudfoot A. E., Wallace C. J. Semisynthesis of cytochrome c analogues. The effect of modifying the conserved residues 38 and 39. Biochem J. 1987 Dec 15;248(3):965–967. doi: 10.1042/bj2480965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qi P. X., Di Stefano D. L., Wand A. J. Solution structure of horse heart ferrocytochrome c determined by high-resolution NMR and restrained simulated annealing. Biochemistry. 1994 May 31;33(21):6408–6417. doi: 10.1021/bi00187a004. [DOI] [PubMed] [Google Scholar]
- Salemme F. R., Freer S. T., Xuong N. H., Alden R. A., Kraut J. The structure of oxidized cytochrome c 2 of Rhodospirillum rubrum. J Biol Chem. 1973 Jun 10;248(11):3910–3921. doi: 10.2210/pdb1c2c/pdb. [DOI] [PubMed] [Google Scholar]
- Surridge C. Watershed for the structure of cytochrome c. Nature. 1994 Jun 2;369(6479):426–426. doi: 10.1038/369426a0. [DOI] [PubMed] [Google Scholar]
- Takano T., Dickerson R. E. Conformation change of cytochrome c. I. Ferrocytochrome c structure refined at 1.5 A resolution. J Mol Biol. 1981 Nov 25;153(1):79–94. doi: 10.1016/0022-2836(81)90528-3. [DOI] [PubMed] [Google Scholar]
- Takano T., Dickerson R. E. Conformation change of cytochrome c. II. Ferricytochrome c refinement at 1.8 A and comparison with the ferrocytochrome structure. J Mol Biol. 1981 Nov 25;153(1):95–115. doi: 10.1016/0022-2836(81)90529-5. [DOI] [PubMed] [Google Scholar]
- Wallace C. J., Mascagni P., Chait B. T., Collawn J. F., Paterson Y., Proudfoot A. E., Kent S. B. Substitutions engineered by chemical synthesis at three conserved sites in mitochondrial cytochrome c. Thermodynamic and functional consequences. J Biol Chem. 1989 Sep 15;264(26):15199–15209. [PubMed] [Google Scholar]