Abstract
The N-terminal 17 residues of ubiquitin have been shown by 1H NMR to fold autonomously into a beta-hairpin structure in aqueous solution. This structure has a specific, native-like register, though side-chain contacts differ in detail from those observed in the intact protein. An autonomously folding hairpin has previously been identified in the case of streptococcal protein G, which is structurally homologous with ubiquitin, but remarkably, the two are not in topologically equivalent positions in the fold. This suggests that the organization of folding may be quite different for proteins sharing similar tertiary structures. Two smaller peptides have also been studied, corresponding to the isolated arms of the N-terminal hairpin of ubiquitin, and significant differences from simple random coil predictions observed in the spectra of these subfragments, suggestive of significant limitation of the backbone conformational space sampled, presumably as a consequence of the strongly beta-structure favoring composition of the sequences. This illustrates the ability of local sequence elements to express a propensity for beta-structure even in the absence of actual sheet formation. Attempts were made to estimate the population of the folded state of the hairpin, in terms of a simple two-state folding model. Using published "random coil" values to model the unfolded state, and values derived from native ubiquitin for the putative unique, folded state, it was found that the apparent population varied widely for different residues and with different NMR parameters. Use of the spectra of the subfragment peptides to provide a more realistic model of the unfolded state led to better agreement in the estimates that could be obtained from chemical shift and coupling constant measurements, while making it clear that some other approaches to population estimation could not give meaningful results, because of the tendency to populate the beta-region of conformational space even in the absence of the hairpin structure.
Full Text
The Full Text of this article is available as a PDF (537.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blanco F. J., Jiménez M. A., Pineda A., Rico M., Santoro J., Nieto J. L. NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation. Biochemistry. 1994 May 17;33(19):6004–6014. doi: 10.1021/bi00185a041. [DOI] [PubMed] [Google Scholar]
- Blanco F. J., Rivas G., Serrano L. A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat Struct Biol. 1994 Sep;1(9):584–590. doi: 10.1038/nsb0994-584. [DOI] [PubMed] [Google Scholar]
- Blanco F. J., Serrano L. Folding of protein G B1 domain studied by the conformational characterization of fragments comprising its secondary structure elements. Eur J Biochem. 1995 Jun 1;230(2):634–649. doi: 10.1111/j.1432-1033.1995.tb20605.x. [DOI] [PubMed] [Google Scholar]
- Bradley E. K., Thomason J. F., Cohen F. E., Kosen P. A., Kuntz I. D. Studies of synthetic helical peptides using circular dichroism and nuclear magnetic resonance. J Mol Biol. 1990 Oct 20;215(4):607–622. doi: 10.1016/S0022-2836(05)80172-X. [DOI] [PubMed] [Google Scholar]
- Cox J. P., Evans P. A., Packman L. C., Williams D. H., Woolfson D. N. Dissecting the structure of a partially folded protein. Circular dichroism and nuclear magnetic resonance studies of peptides from ubiquitin. J Mol Biol. 1993 Nov 20;234(2):483–492. doi: 10.1006/jmbi.1993.1600. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Merutka G., Waltho J. P., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. I. Myohemerythrin. J Mol Biol. 1992 Aug 5;226(3):795–817. doi: 10.1016/0022-2836(92)90633-u. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Rance M., Houghten R. A., Lerner R. A., Wright P. E. Folding of immunogenic peptide fragments of proteins in water solution. I. Sequence requirements for the formation of a reverse turn. J Mol Biol. 1988 May 5;201(1):161–200. doi: 10.1016/0022-2836(88)90446-9. [DOI] [PubMed] [Google Scholar]
- Gellman S. H. Minimal model systems for beta sheet secondary structure in proteins. Curr Opin Chem Biol. 1998 Dec;2(6):717–725. doi: 10.1016/s1367-5931(98)80109-9. [DOI] [PubMed] [Google Scholar]
- Harding M. M., Williams D. H., Woolfson D. N. Characterization of a partially denatured state of a protein by two-dimensional NMR: reduction of the hydrophobic interactions in ubiquitin. Biochemistry. 1991 Mar 26;30(12):3120–3128. doi: 10.1021/bi00226a020. [DOI] [PubMed] [Google Scholar]
- Hutchinson E. G., Sessions R. B., Thornton J. M., Woolfson D. N. Determinants of strand register in antiparallel beta-sheets of proteins. Protein Sci. 1998 Nov;7(11):2287–2300. doi: 10.1002/pro.5560071106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jimenez M. A., Bruix M., Gonzalez C., Blanco F. J., Nieto J. L., Herranz J., Rico M. CD and 1H-NMR studies on the conformational properties of peptide fragments from the C-terminal domain of thermolysin. Eur J Biochem. 1993 Feb 1;211(3):569–581. doi: 10.1111/j.1432-1033.1993.tb17584.x. [DOI] [PubMed] [Google Scholar]
- Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
- Merutka G., Dyson H. J., Wright P. E. 'Random coil' 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. J Biomol NMR. 1995 Jan;5(1):14–24. doi: 10.1007/BF00227466. [DOI] [PubMed] [Google Scholar]
- Orengo C. A., Thornton J. M. Alpha plus beta folds revisited: some favoured motifs. Structure. 1993 Oct 15;1(2):105–120. doi: 10.1016/0969-2126(93)90026-d. [DOI] [PubMed] [Google Scholar]
- Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
- Ramírez-Alvarado M., Blanco F. J., Niemann H., Serrano L. Role of beta-turn residues in beta-hairpin formation and stability in designed peptides. J Mol Biol. 1997 Nov 7;273(4):898–912. doi: 10.1006/jmbi.1997.1347. [DOI] [PubMed] [Google Scholar]
- Ramírez-Alvarado M., Blanco F. J., Serrano L. De novo design and structural analysis of a model beta-hairpin peptide system. Nat Struct Biol. 1996 Jul;3(7):604–612. doi: 10.1038/nsb0796-604. [DOI] [PubMed] [Google Scholar]
- Ramírez-Alvarado M., Serrano L., Blanco F. J. Conformational analysis of peptides corresponding to all the secondary structure elements of protein L B1 domain: secondary structure propensities are not conserved in proteins with the same fold. Protein Sci. 1997 Jan;6(1):162–174. doi: 10.1002/pro.5560060119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scholtz J. M., Baldwin R. L. The mechanism of alpha-helix formation by peptides. Annu Rev Biophys Biomol Struct. 1992;21:95–118. doi: 10.1146/annurev.bb.21.060192.000523. [DOI] [PubMed] [Google Scholar]
- Searle M. S., Williams D. H., Packman L. C. A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native beta-hairpin. Nat Struct Biol. 1995 Nov;2(11):999–1006. doi: 10.1038/nsb1195-999. [DOI] [PubMed] [Google Scholar]
- Searle M. S., Zerella R., Williams D. H., Packman L. C. Native-like beta-hairpin structure in an isolated fragment from ferredoxin: NMR and CD studies of solvent effects on the N-terminal 20 residues. Protein Eng. 1996 Jul;9(7):559–565. doi: 10.1093/protein/9.7.559. [DOI] [PubMed] [Google Scholar]
- Serrano L. Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation. J Mol Biol. 1995 Nov 24;254(2):322–333. doi: 10.1006/jmbi.1995.0619. [DOI] [PubMed] [Google Scholar]
- Sibanda B. L., Thornton J. M. Conformation of beta hairpins in protein structures: classification and diversity in homologous structures. Methods Enzymol. 1991;202:59–82. doi: 10.1016/0076-6879(91)02007-v. [DOI] [PubMed] [Google Scholar]
- Smith L. J., Bolin K. A., Schwalbe H., MacArthur M. W., Thornton J. M., Dobson C. M. Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. J Mol Biol. 1996 Jan 26;255(3):494–506. doi: 10.1006/jmbi.1996.0041. [DOI] [PubMed] [Google Scholar]
- Stockman B. J., Euvrard A., Scahill T. A. Heteronuclear three-dimensional NMR spectroscopy of a partially denatured protein: the A-state of human ubiquitin. J Biomol NMR. 1993 May;3(3):285–296. doi: 10.1007/BF00212515. [DOI] [PubMed] [Google Scholar]
- Vijay-Kumar S., Bugg C. E., Cook W. J. Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol. 1987 Apr 5;194(3):531–544. doi: 10.1016/0022-2836(87)90679-6. [DOI] [PubMed] [Google Scholar]
- Waltho J. P., Feher V. A., Merutka G., Dyson H. J., Wright P. E. Peptide models of protein folding initiation sites. 1. Secondary structure formation by peptides corresponding to the G- and H-helices of myoglobin. Biochemistry. 1993 Jun 29;32(25):6337–6347. doi: 10.1021/bi00076a006. [DOI] [PubMed] [Google Scholar]
- Williams D. H., Bardsley B., Tsuzuki W., Maguire A. J. A limitation of two-state analysis for transitions between disordered and weakly ordered states. Chem Biol. 1997 Jul;4(7):507–512. doi: 10.1016/s1074-5521(97)90322-7. [DOI] [PubMed] [Google Scholar]
- Williamson M. P. Secondary-structure dependent chemical shifts in proteins. Biopolymers. 1990 Aug 15;29(10-11):1423–1431. doi: 10.1002/bip.360291009. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
- Wouters M. A., Curmi P. M. An analysis of side chain interactions and pair correlations within antiparallel beta-sheets: the differences between backbone hydrogen-bonded and non-hydrogen-bonded residue pairs. Proteins. 1995 Jun;22(2):119–131. doi: 10.1002/prot.340220205. [DOI] [PubMed] [Google Scholar]
- de Alba E., Jiménez M. A., Rico M., Nieto J. L. Conformational investigation of designed short linear peptides able to fold into beta-hairpin structures in aqueous solution. Fold Des. 1996;1(2):133–144. doi: 10.1016/s1359-0278(96)00022-3. [DOI] [PubMed] [Google Scholar]