Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jun;8(6):1210–1217. doi: 10.1110/ps.8.6.1210

Diversity of functions of proteins with internal symmetry in spatial arrangement of secondary structural elements.

K Kinoshita 1, A Kidera 1, N Go 1
PMCID: PMC2144365  PMID: 10386871

Abstract

We carry out a systematic analysis of the correlation between similarity of protein three-dimensional structures and their evolutionary relationships. The structural similarity is quantitatively identified by an all-against-all comparison of the spatial arrangement of secondary structural elements in nonredundant 967 representative proteins, and the evolutionary relationship is judged according to the definition of superfamily in the SCOP database. We find the following symmetry rule: a protein pair that has similar folds but belong to different superfamilies has (with a very rare exception) certain internal symmetry in its common similar folds. Possible reasons behind the symmetry rule are discussed.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrov N. N., Go N. Biological meaning, statistical significance, and classification of local spatial similarities in nonhomologous proteins. Protein Sci. 1994 Jun;3(6):866–875. doi: 10.1002/pro.5560030601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Brenner S. E., Chothia C., Hubbard T. J. Population statistics of protein structures: lessons from structural classifications. Curr Opin Struct Biol. 1997 Jun;7(3):369–376. doi: 10.1016/s0959-440x(97)80054-1. [DOI] [PubMed] [Google Scholar]
  4. Chothia C., Finkelstein A. V. The classification and origins of protein folding patterns. Annu Rev Biochem. 1990;59:1007–1039. doi: 10.1146/annurev.bi.59.070190.005043. [DOI] [PubMed] [Google Scholar]
  5. Gaudet R., Bohm A., Sigler P. B. Crystal structure at 2.4 angstroms resolution of the complex of transducin betagamma and its regulator, phosducin. Cell. 1996 Nov 1;87(3):577–588. doi: 10.1016/s0092-8674(00)81376-8. [DOI] [PubMed] [Google Scholar]
  6. Gibrat J. F., Madej T., Bryant S. H. Surprising similarities in structure comparison. Curr Opin Struct Biol. 1996 Jun;6(3):377–385. doi: 10.1016/s0959-440x(96)80058-3. [DOI] [PubMed] [Google Scholar]
  7. Hobohm U., Sander C. Enlarged representative set of protein structures. Protein Sci. 1994 Mar;3(3):522–524. doi: 10.1002/pro.5560030317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hobohm U., Scharf M., Schneider R., Sander C. Selection of representative protein data sets. Protein Sci. 1992 Mar;1(3):409–417. doi: 10.1002/pro.5560010313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holm L., Sander C. Mapping the protein universe. Science. 1996 Aug 2;273(5275):595–603. doi: 10.1126/science.273.5275.595. [DOI] [PubMed] [Google Scholar]
  10. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  11. Karlin S., Altschul S. F. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2264–2268. doi: 10.1073/pnas.87.6.2264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mizuguchi K., Go N. Comparison of spatial arrangements of secondary structural elements in proteins. Protein Eng. 1995 Apr;8(4):353–362. doi: 10.1093/protein/8.4.353. [DOI] [PubMed] [Google Scholar]
  13. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  14. Orengo C. A., Jones D. T., Thornton J. M. Protein superfamilies and domain superfolds. Nature. 1994 Dec 15;372(6507):631–634. doi: 10.1038/372631a0. [DOI] [PubMed] [Google Scholar]
  15. Orengo C. A., Michie A. D., Jones S., Jones D. T., Swindells M. B., Thornton J. M. CATH--a hierarchic classification of protein domain structures. Structure. 1997 Aug 15;5(8):1093–1108. doi: 10.1016/s0969-2126(97)00260-8. [DOI] [PubMed] [Google Scholar]
  16. Rao S. T., Rossmann M. G. Comparison of super-secondary structures in proteins. J Mol Biol. 1973 May 15;76(2):241–256. doi: 10.1016/0022-2836(73)90388-4. [DOI] [PubMed] [Google Scholar]
  17. Richardson J. S. beta-Sheet topology and the relatedness of proteins. Nature. 1977 Aug 11;268(5620):495–500. doi: 10.1038/268495a0. [DOI] [PubMed] [Google Scholar]
  18. Saarinen M., Gleason F. K., Eklund H. Crystal structure of thioredoxin-2 from Anabaena. Structure. 1995 Oct 15;3(10):1097–1108. doi: 10.1016/s0969-2126(01)00245-3. [DOI] [PubMed] [Google Scholar]
  19. Wolynes P. G. Symmetry and the energy landscapes of biomolecules. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14249–14255. doi: 10.1073/pnas.93.25.14249. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES