Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jul;8(7):1475–1483. doi: 10.1110/ps.8.7.1475

A new protein folding screen: application to the ligand binding domains of a glutamate and kainate receptor and to lysozyme and carbonic anhydrase.

N Armstrong 1, A de Lencastre 1, E Gouaux 1
PMCID: PMC2144371  PMID: 10422836

Abstract

Production of folded and biologically active protein from Escherichia coli derived inclusion bodies can only be accomplished if a scheme exists for in vitro naturation. Motivated by the need for a rapid and statistically meaningful method of determining and evaluating protein folding conditions, we have designed a new fractional factorial protein folding screen. The screen includes 12 factors shown by previous experiments to enhance protein folding and it incorporates the 12 factors into 16 different folding conditions. By examining a 1/256th fraction of the full factorial, multiple folding conditions were determined for the ligand binding domains from glutamate and kainate receptors, and for lysozyme and carbonic anhydrase B. The impact of each factor on the formation of biologically active material was estimated by calculating factor main effects. Factors and corresponding levels such as pH (8.5) and L-arginine (0.5 M) consistently had a positive effect on protein folding, whereas detergent (0.3 mM lauryl maltoside) and nonpolar additive (0.4 M sucrose) were detrimental to the folding of these four proteins. One of the 16 conditions yielded the most folded material for three out of the four proteins. Our results suggest that this protein folding screen will be generally useful in determining whether other proteins will fold in vitro and, if so, what factors are important. Furthermore, fractional factorial folding screens are well suited to the evaluation of previously untested factors on protein folding.

Full Text

The Full Text of this article is available as a PDF (647.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn J. H., Lee Y. P., Rhee J. S. Investigation of refolding condition for Pseudomonas fluorescens lipase by response surface methodology. J Biotechnol. 1997 May 9;54(3):151–160. doi: 10.1016/s0168-1656(97)01693-3. [DOI] [PubMed] [Google Scholar]
  2. Arvola M., Keinänen K. Characterization of the ligand-binding domains of glutamate receptor (GluR)-B and GluR-D subunits expressed in Escherichia coli as periplasmic proteins. J Biol Chem. 1996 Jun 28;271(26):15527–15532. doi: 10.1074/jbc.271.26.15527. [DOI] [PubMed] [Google Scholar]
  3. Chen G. Q., Gouaux E. Overexpression of a glutamate receptor (GluR2) ligand binding domain in Escherichia coli: application of a novel protein folding screen. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13431–13436. doi: 10.1073/pnas.94.25.13431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen G. Q., Sun Y., Jin R., Gouaux E. Probing the ligand binding domain of the GluR2 receptor by proteolysis and deletion mutagenesis defines domain boundaries and yields a crystallizable construct. Protein Sci. 1998 Dec;7(12):2623–2630. doi: 10.1002/pro.5560071216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark EDB. Refolding of recombinant proteins. Curr Opin Biotechnol. 1998 Apr 1;9(2):157–163. doi: 10.1016/s0958-1669(98)80109-2. [DOI] [PubMed] [Google Scholar]
  6. Cleland J. L., Hedgepeth C., Wang D. I. Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model. J Biol Chem. 1992 Jul 5;267(19):13327–13334. [PubMed] [Google Scholar]
  7. Cohen G. H., Silverton E. W., Davies D. R. Refined crystal structure of gamma-chymotrypsin at 1.9 A resolution. Comparison with other pancreatic serine proteases. J Mol Biol. 1981 Jun 5;148(4):449–479. doi: 10.1016/0022-2836(81)90186-8. [DOI] [PubMed] [Google Scholar]
  8. Cole P. A. Chaperone-assisted protein expression. Structure. 1996 Mar 15;4(3):239–242. doi: 10.1016/s0969-2126(96)00028-7. [DOI] [PubMed] [Google Scholar]
  9. Dobson C. M., Evans P. A., Radford S. E. Understanding how proteins fold: the lysozyme story so far. Trends Biochem Sci. 1994 Jan;19(1):31–37. doi: 10.1016/0968-0004(94)90171-6. [DOI] [PubMed] [Google Scholar]
  10. Grunfeld H., Patel A., Shatzman A., Nishikawa A. H. Effector-assisted refolding of recombinant tissue-plasminogen activator produced in Escherichia coli. Appl Biochem Biotechnol. 1992 May;33(2):117–138. doi: 10.1007/BF02950781. [DOI] [PubMed] [Google Scholar]
  11. Hofmann A., Tai M., Wong W., Glabe C. G. A sparse matrix screen to establish initial conditions for protein renaturation. Anal Biochem. 1995 Sep 1;230(1):8–15. doi: 10.1006/abio.1995.1429. [DOI] [PubMed] [Google Scholar]
  12. Höltje J. V. Lysozyme substrates. EXS. 1996;75:105–110. doi: 10.1007/978-3-0348-9225-4_7. [DOI] [PubMed] [Google Scholar]
  13. Misawa S., Aoshima M., Takaku H., Matsumoto M., Hayashi H. High-level expression of Mycoplasma arginine deiminase in Escherichia coli and its efficient renaturation as an anti-tumor enzyme. J Biotechnol. 1994 Aug 15;36(2):145–155. doi: 10.1016/0168-1656(94)90050-7. [DOI] [PubMed] [Google Scholar]
  14. Rozema D., Gellman S. H. Artificial chaperone-assisted refolding of carbonic anhydrase B. J Biol Chem. 1996 Feb 16;271(7):3478–3487. doi: 10.1074/jbc.271.7.3478. [DOI] [PubMed] [Google Scholar]
  15. Rudolph R., Lilie H. In vitro folding of inclusion body proteins. FASEB J. 1996 Jan;10(1):49–56. [PubMed] [Google Scholar]
  16. Saxena V. P., Wetlaufer D. B. Formation of three-dimensional structure in proteins. I. Rapid nonenzymic reactivation of reduced lysozyme. Biochemistry. 1970 Dec 8;9(25):5015–5023. doi: 10.1021/bi00827a028. [DOI] [PubMed] [Google Scholar]
  17. Stöckel J., Döring K., Malotka J., Jähnig F., Dornmair K. Pathway of detergent-mediated and peptide ligand-mediated refolding of heterodimeric class II major histocompatibility complex (MHC) molecules. Eur J Biochem. 1997 Sep 15;248(3):684–691. doi: 10.1111/j.1432-1033.1997.t01-2-00684.x. [DOI] [PubMed] [Google Scholar]
  18. Tandon S., Horowitz P. M. Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effects of the concentration and type of detergent. J Biol Chem. 1987 Apr 5;262(10):4486–4491. [PubMed] [Google Scholar]
  19. Timasheff S. N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct. 1993;22:67–97. doi: 10.1146/annurev.bb.22.060193.000435. [DOI] [PubMed] [Google Scholar]
  20. Wetlaufer D. B., Xie Y. Control of aggregation in protein refolding: a variety of surfactants promote renaturation of carbonic anhydrase II. Protein Sci. 1995 Aug;4(8):1535–1543. doi: 10.1002/pro.5560040811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williamson R. A., Natalia D., Gee C. K., Murphy G., Carr M. D., Freedman R. B. Chemically and conformationally authentic active domain of human tissue inhibitor of metalloproteinases-2 refolded from bacterial inclusion bodies. Eur J Biochem. 1996 Oct 15;241(2):476–483. doi: 10.1111/j.1432-1033.1996.00476.x. [DOI] [PubMed] [Google Scholar]
  22. Winkler M. E., Blaber M. Purification and characterization of recombinant single-chain urokinase produced in Escherichia coli. Biochemistry. 1986 Jul 15;25(14):4041–4045. doi: 10.1021/bi00362a008. [DOI] [PubMed] [Google Scholar]
  23. Wo Z. G., Oswald R. E. Transmembrane topology of two kainate receptor subunits revealed by N-glycosylation. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7154–7158. doi: 10.1073/pnas.91.15.7154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wong K. P., Tanford C. Denaturation of bovine carbonic anhydrase B by guanidine hydrochloride. A process involving separable sequential conformational transitions. J Biol Chem. 1973 Dec 25;248(24):8518–8523. [PubMed] [Google Scholar]
  25. Xie Y., Wetlaufer D. B. Control of aggregation in protein refolding: the temperature-leap tactic. Protein Sci. 1996 Mar;5(3):517–523. doi: 10.1002/pro.5560050314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zardeneta G., Horowitz P. M. Detergent, liposome, and micelle-assisted protein refolding. Anal Biochem. 1994 Nov 15;223(1):1–6. doi: 10.1006/abio.1994.1537. [DOI] [PubMed] [Google Scholar]
  27. Zardeneta G., Horowitz P. M. Protein refolding at high concentrations using detergent/phospholipid mixtures. Anal Biochem. 1994 May 1;218(2):392–398. doi: 10.1006/abio.1994.1197. [DOI] [PubMed] [Google Scholar]
  28. Zhi W., Landry S. J., Gierasch L. M., Srere P. A. Renaturation of citrate synthase: influence of denaturant and folding assistants. Protein Sci. 1992 Apr;1(4):522–529. doi: 10.1002/pro.5560010407. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES