Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jul;8(7):1484–1491. doi: 10.1110/ps.8.7.1484

Conformational properties of native sperm whale apomyoglobin in solution.

J T Lecomte 1, S F Sukits 1, S Bhattacharya 1, C J Falzone 1
PMCID: PMC2144374  PMID: 10422837

Abstract

Apomyoglobin from sperm whale is often used for studies of ligand binding, protein folding, and protein stability. In an effort to describe its conformational properties in solution, homonuclear and heteronuclear (13C and 15N) NMR methods were applied to the protein in its native state. Assignments were confirmed for nuclear Overhauser effects (NOEs) involving side chain and backbone protons in the folded regions of the structure. These NOEs were used to derive distance restraints. The shifts induced by the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid (ANS) were inspected in the regions remote from its binding site and served as an indicator of conformational flexibility. 3JalphaH-NH values were obtained to assess dihedral angle averaging and to provide additional restraints. A family of structures was calculated with X-PLOR and an ab initio simulated annealing protocol using holomyoglobin as a template. Where the structure appeared well defined by chemical shift, line width, ANS perturbation, and density of NOEs, the low resolution model of apomyoglobin provides a valid approximation for the structure. The new model offers an improved representation of the folded regions of the protein, which encompass the A, B, E, helices as well as parts of the G and H helices. Regions that are less well defined at this stage of calculations include the CD corner and the end of the H-helix. The EF-F-FG segment remains uncharacterized.

Full Text

The Full Text of this article is available as a PDF (324.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abseher R., Horstink L., Hilbers C. W., Nilges M. Essential spaces defined by NMR structure ensembles and molecular dynamics simulation show significant overlap. Proteins. 1998 Jun 1;31(4):370–382. [PubMed] [Google Scholar]
  2. BRESLOW E., BEYCHOK S., HARDMAN K. D., GURD F. R. RELATIVE CONFORMATIONS OF SPERM WHALE METMYOGLOBIN AND APOMYOGLOBIN IN SOLUTION. J Biol Chem. 1965 Jan;240:304–309. [PubMed] [Google Scholar]
  3. Ballew R. M., Sabelko J., Gruebele M. Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5759–5764. doi: 10.1073/pnas.93.12.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ballew R. M., Sabelko J., Gruebele M. Observation of distinct nanosecond and microsecond protein folding events. Nat Struct Biol. 1996 Nov;3(11):923–926. doi: 10.1038/nsb1196-923. [DOI] [PubMed] [Google Scholar]
  5. Barrick D., Baldwin R. L. Three-state analysis of sperm whale apomyoglobin folding. Biochemistry. 1993 Apr 13;32(14):3790–3796. doi: 10.1021/bi00065a035. [DOI] [PubMed] [Google Scholar]
  6. Bashford D., Chothia C., Lesk A. M. Determinants of a protein fold. Unique features of the globin amino acid sequences. J Mol Biol. 1987 Jul 5;196(1):199–216. doi: 10.1016/0022-2836(87)90521-3. [DOI] [PubMed] [Google Scholar]
  7. Bhattacharya S., Sukits S. F., MacLaughlin K. L., Lecomte J. T. The tautomeric state of histidines in myoglobin. Biophys J. 1997 Dec;73(6):3230–3240. doi: 10.1016/S0006-3495(97)78348-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cheng X. D., Schoenborn B. P. Neutron diffraction study of carbonmonoxymyoglobin. J Mol Biol. 1991 Jul 20;220(2):381–399. doi: 10.1016/0022-2836(91)90020-7. [DOI] [PubMed] [Google Scholar]
  9. Cocco M. J., Kao Y. H., Phillips A. T., Lecomte J. T. Structural comparison of apomyoglobin and metaquomyoglobin: pH titration of histidines by NMR spectroscopy. Biochemistry. 1992 Jul 21;31(28):6481–6491. doi: 10.1021/bi00143a018. [DOI] [PubMed] [Google Scholar]
  10. Cocco M. J., Lecomte J. T. Characterization of hydrophobic cores in apomyoglobin: a proton NMR spectroscopy study. Biochemistry. 1990 Dec 18;29(50):11067–11072. doi: 10.1021/bi00502a008. [DOI] [PubMed] [Google Scholar]
  11. Cocco M. J., Lecomte J. T. The native state of apomyoglobin described by proton NMR spectroscopy: interaction with the paramagnetic probe HyTEMPO and the fluorescent dye ANS. Protein Sci. 1994 Feb;3(2):267–281. doi: 10.1002/pro.5560030211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dyson H. J., Wright P. E. Equilibrium NMR studies of unfolded and partially folded proteins. Nat Struct Biol. 1998 Jul;5 (Suppl):499–503. doi: 10.1038/739. [DOI] [PubMed] [Google Scholar]
  13. Eliezer D., Wright P. E. Is apomyoglobin a molten globule? Structural characterization by NMR. J Mol Biol. 1996 Nov 8;263(4):531–538. doi: 10.1006/jmbi.1996.0596. [DOI] [PubMed] [Google Scholar]
  14. Eliezer D., Yao J., Dyson H. J., Wright P. E. Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nat Struct Biol. 1998 Feb;5(2):148–155. doi: 10.1038/nsb0298-148. [DOI] [PubMed] [Google Scholar]
  15. Falzone C. J., Mayer M. R., Whiteman E. L., Moore C. D., Lecomte J. T. Design challenges for hemoproteins: the solution structure of apocytochrome b5. Biochemistry. 1996 May 28;35(21):6519–6526. doi: 10.1021/bi960501q. [DOI] [PubMed] [Google Scholar]
  16. Feng Y., Sligar S. G., Wand A. J. Solution structure of apocytochrome b562. Nat Struct Biol. 1994 Jan;1(1):30–35. doi: 10.1038/nsb0194-30. [DOI] [PubMed] [Google Scholar]
  17. Fontana A., Zambonin M., Polverino de Laureto P., De Filippis V., Clementi A., Scaramella E. Probing the conformational state of apomyoglobin by limited proteolysis. J Mol Biol. 1997 Feb 21;266(2):223–230. doi: 10.1006/jmbi.1996.0787. [DOI] [PubMed] [Google Scholar]
  18. Fuentes E. J., Wand A. J. Local dynamics and stability of apocytochrome b562 examined by hydrogen exchange. Biochemistry. 1998 Mar 17;37(11):3687–3698. doi: 10.1021/bi972579s. [DOI] [PubMed] [Google Scholar]
  19. Gilmanshin R., Williams S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3709–3713. doi: 10.1073/pnas.94.8.3709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Griko Y. V., Privalov P. L. Thermodynamic puzzle of apomyoglobin unfolding. J Mol Biol. 1994 Jan 28;235(4):1318–1325. doi: 10.1006/jmbi.1994.1085. [DOI] [PubMed] [Google Scholar]
  21. Griko Y. V., Privalov P. L., Venyaminov S. Y., Kutyshenko V. P. Thermodynamic study of the apomyoglobin structure. J Mol Biol. 1988 Jul 5;202(1):127–138. doi: 10.1016/0022-2836(88)90525-6. [DOI] [PubMed] [Google Scholar]
  22. Ha J. H., Loh S. N. Changes in side chain packing during apomyoglobin folding characterized by pulsed thiol-disulfide exchange. Nat Struct Biol. 1998 Aug;5(8):730–737. doi: 10.1038/1436. [DOI] [PubMed] [Google Scholar]
  23. Haliloglu T., Bahar I. Coarse-grained simulations of conformational dynamics of proteins: application to apomyoglobin. Proteins. 1998 May 15;31(3):271–281. [PubMed] [Google Scholar]
  24. Hargrove M. S., Barrick D., Olson J. S. The association rate constant for heme binding to globin is independent of protein structure. Biochemistry. 1996 Sep 3;35(35):11293–11299. doi: 10.1021/bi960371l. [DOI] [PubMed] [Google Scholar]
  25. Hargrove M. S., Wilkinson A. J., Olson J. S. Structural factors governing hemin dissociation from metmyoglobin. Biochemistry. 1996 Sep 3;35(35):11300–11309. doi: 10.1021/bi960372d. [DOI] [PubMed] [Google Scholar]
  26. Hughson F. M., Wright P. E., Baldwin R. L. Structural characterization of a partly folded apomyoglobin intermediate. Science. 1990 Sep 28;249(4976):1544–1548. doi: 10.1126/science.2218495. [DOI] [PubMed] [Google Scholar]
  27. Ikura M., Kay L. E., Bax A. Improved three-dimensional 1H-13C-1H correlation spectroscopy of a 13C-labeled protein using constant-time evolution. J Biomol NMR. 1991 Sep;1(3):299–304. doi: 10.1007/BF01875522. [DOI] [PubMed] [Google Scholar]
  28. Jennings P. A., Wright P. E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 1993 Nov 5;262(5135):892–896. doi: 10.1126/science.8235610. [DOI] [PubMed] [Google Scholar]
  29. Kataoka M., Nishii I., Fujisawa T., Ueki T., Tokunaga F., Goto Y. Structural characterization of the molten globule and native states of apomyoglobin by solution X-ray scattering. J Mol Biol. 1995 May 26;249(1):215–228. doi: 10.1006/jmbi.1995.0290. [DOI] [PubMed] [Google Scholar]
  30. Kawamura-Konishi Y., Kihara H., Suzuki H. Reconstitution of myoglobin from apoprotein and heme, monitored by stopped-flow absorption, fluorescence and circular dichroism. Eur J Biochem. 1988 Jan 4;170(3):589–595. doi: 10.1111/j.1432-1033.1988.tb13738.x. [DOI] [PubMed] [Google Scholar]
  31. La Mar G. N., Budd D. L., Viscio D. B., Smith K. M., Langry K. C. Proton nuclear magnetic resonance characterization of heme disorder in hemoproteins. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5755–5759. doi: 10.1073/pnas.75.12.5755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. La Mar G. N., Davis N. L., Parish D. W., Smith K. M. Heme orientational disorder in reconstituted and native sperm whale myoglobin. Proton nuclear magnetic resonance characterizations by heme methyl deuterium labeling in the Met-cyano protein. J Mol Biol. 1983 Aug 25;168(4):887–896. doi: 10.1016/s0022-2836(83)80080-1. [DOI] [PubMed] [Google Scholar]
  33. Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
  34. Lecomte J. T., Kao Y. H., Cocco M. J. The native state of apomyoglobin described by proton NMR spectroscopy: the A-B-G-H interface of wild-type sperm whale apomyoglobin. Proteins. 1996 Jul;25(3):267–285. doi: 10.1002/(SICI)1097-0134(199607)25:3<267::AID-PROT1>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  35. Nanzer A. P., Poulsen F. M., van Gunsteren W. F., Torda A. E. A reassessment of the structure of chymotrypsin inhibitor 2 (CI-2) using time-averaged NMR restraints. Biochemistry. 1994 Dec 6;33(48):14503–14511. doi: 10.1021/bi00252a017. [DOI] [PubMed] [Google Scholar]
  36. Osapay K., Theriault Y., Wright P. E., Case D. A. Solution structure of carbonmonoxy myoglobin determined from nuclear magnetic resonance distance and chemical shift constraints. J Mol Biol. 1994 Nov 25;244(2):183–197. doi: 10.1006/jmbi.1994.1718. [DOI] [PubMed] [Google Scholar]
  37. Pfeil W., Bendzko P. Thermodynamic investigations of cytochrome b5 unfolding. I. The tryptic fragment of cytochrome b5. Biochim Biophys Acta. 1980 Nov 20;626(1):73–78. doi: 10.1016/0005-2795(80)90198-1. [DOI] [PubMed] [Google Scholar]
  38. Pfeil W. Thermodynamics of apocytochrome b5 unfolding. Protein Sci. 1993 Sep;2(9):1497–1501. doi: 10.1002/pro.5560020914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Privalov P. L., Griko YuV, Venyaminov SYu, Kutyshenko V. P. Cold denaturation of myoglobin. J Mol Biol. 1986 Aug 5;190(3):487–498. doi: 10.1016/0022-2836(86)90017-3. [DOI] [PubMed] [Google Scholar]
  40. Riek R., Hornemann S., Wider G., Glockshuber R., Wüthrich K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett. 1997 Aug 18;413(2):282–288. doi: 10.1016/s0014-5793(97)00920-4. [DOI] [PubMed] [Google Scholar]
  41. Robinson C. R., Liu Y., O'Brien R., Sligar S. G., Sturtevant J. M. A differential scanning calorimetric study of the thermal unfolding of apo- and holo-cytochrome b562. Protein Sci. 1998 Apr;7(4):961–965. doi: 10.1002/pro.5560070413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Runnegar B. Derivation of the globins from type b cytochromes. J Mol Evol. 1984;21(1):33–41. doi: 10.1007/BF02100625. [DOI] [PubMed] [Google Scholar]
  43. Shortle D. R. Structural analysis of non-native states of proteins by NMR methods. Curr Opin Struct Biol. 1996 Feb;6(1):24–30. doi: 10.1016/s0959-440x(96)80091-1. [DOI] [PubMed] [Google Scholar]
  44. Stryer L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol. 1965 Sep;13(2):482–495. doi: 10.1016/s0022-2836(65)80111-5. [DOI] [PubMed] [Google Scholar]
  45. TEALE F. W. Cleavage of the haem-protein link by acid methylethylketone. Biochim Biophys Acta. 1959 Oct;35:543–543. doi: 10.1016/0006-3002(59)90407-x. [DOI] [PubMed] [Google Scholar]
  46. Takano T. Structure of myoglobin refined at 2-0 A resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):537–568. doi: 10.1016/s0022-2836(77)80111-3. [DOI] [PubMed] [Google Scholar]
  47. Takano T. Structure of myoglobin refined at 2-0 A resolution. II. Structure of deoxymyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):569–584. doi: 10.1016/s0022-2836(77)80112-5. [DOI] [PubMed] [Google Scholar]
  48. Thériault Y., Pochapsky T. C., Dalvit C., Chiu M. L., Sligar S. G., Wright P. E. 1H and 15N resonance assignments and secondary structure of the carbon monoxide complex of sperm whale myoglobin. J Biomol NMR. 1994 Jul;4(4):491–504. doi: 10.1007/BF00156616. [DOI] [PubMed] [Google Scholar]
  49. Torda A. E., Scheek R. M., van Gunsteren W. F. Time-averaged nuclear Overhauser effect distance restraints applied to tendamistat. J Mol Biol. 1990 Jul 5;214(1):223–235. doi: 10.1016/0022-2836(90)90157-H. [DOI] [PubMed] [Google Scholar]
  50. Venable R. M., Pastor R. W. Frictional models for stochastic simulations of proteins. Biopolymers. 1988 Jun;27(6):1001–1014. doi: 10.1002/bip.360270609. [DOI] [PubMed] [Google Scholar]
  51. Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
  52. Yang F., Phillips G. N., Jr Crystal structures of CO-, deoxy- and met-myoglobins at various pH values. J Mol Biol. 1996 Mar 8;256(4):762–774. doi: 10.1006/jmbi.1996.0123. [DOI] [PubMed] [Google Scholar]
  53. Zhong M., Lin L., Kallenbach N. R. A method for probing the topography and interactions of proteins: footprinting of myoglobin. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2111–2115. doi: 10.1073/pnas.92.6.2111. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES