Abstract
The complete covalent structure of a novel boar DQH sperm surface protein resistant to many classical procedures of enzymatic fragmentation was determined. The relative molecular mass of the major form of this protein determined by ESI-MS and MALDI-MS was 13,065.2+/-1.0 and 13,065.1, respectively. However, additional peaks differing by 162 Da (i.e., minus hexose), 365 Da (i.e., minus hexose and N-acetylhexosamine), 146 Da (i.e., plus deoxyhexose), and 291 Da (i.e., plus sialic acid) indicated the heterogeneity due to differences in glycosylation. The complete covalent structure of the protein was determined using automated Edman degradation, MALDI-MS, and post-source decay (PSD) MALDI-MS, and shown to consist of N-terminal O-glycosylated peptide followed by two fibronectin type II repeats. The carbohydrates are O-glycosidically linked to threonine 10, as confirmed by PSD MALDI-MS of the isolated N-terminal glycopeptide. Eight cysteine residues of the protein form four disulfide bridges, the positions of which were assigned from MALDI-MS and Edman degradation data. We conclude that mass spectral techniques provide an indispensable tool for the detailed analysis of the covalent structure of proteins, especially those that are refractory to standard approaches of protein chemistry.
Full Text
The Full Text of this article is available as a PDF (199.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bork P., Beckmann G. The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol. 1993 May 20;231(2):539–545. doi: 10.1006/jmbi.1993.1305. [DOI] [PubMed] [Google Scholar]
- Brune D. C. Alkylation of cysteine with acrylamide for protein sequence analysis. Anal Biochem. 1992 Dec;207(2):285–290. doi: 10.1016/0003-2697(92)90013-w. [DOI] [PubMed] [Google Scholar]
- Calvete J. J., Mann K., Schäfer W., Sanz L., Reinert M., Nessau S., Raida M., Töpfer-Petersen E. Amino acid sequence of HSP-1, a major protein of stallion seminal plasma: effect of glycosylation on its heparin- and gelatin-binding capabilities. Biochem J. 1995 Sep 1;310(Pt 2):615–622. doi: 10.1042/bj3100615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calvete J. J., Raida M., Gentzel M., Urbanke C., Sanz L., Töpfer-Petersen E. Isolation and characterization of heparin- and phosphorylcholine-binding proteins of boar and stallion seminal plasma. Primary structure of porcine pB1. FEBS Lett. 1997 Apr 28;407(2):201–206. doi: 10.1016/s0014-5793(97)00344-x. [DOI] [PubMed] [Google Scholar]
- Fernlund P., Granberg L. B., Roepstorff P. Amino acid sequence of beta-microseminoprotein from porcine seminal plasma. Arch Biochem Biophys. 1994 Feb 15;309(1):70–76. doi: 10.1006/abbi.1994.1086. [DOI] [PubMed] [Google Scholar]
- Gorman J. J., Ferguson B. L., Speelman D., Mills J. Determination of the disulfide bond arrangement of human respiratory syncytial virus attachment (G) protein by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein Sci. 1997 Jun;6(6):1308–1315. doi: 10.1002/pro.5560060619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hadjisavas M., Armstrong D. T., Seamark R. F. Purification of a cell-cell adhesion regulator from porcine seminal vesicle fluid. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1206–1216. doi: 10.1006/bbrc.1994.2794. [DOI] [PubMed] [Google Scholar]
- Honda S., Iwase S., Makino A., Fujiwara S. Simultaneous determination of reducing monosaccharides by capillary zone electrophoresis as the borate complexes of N-2-pyridylglycamines. Anal Biochem. 1989 Jan;176(1):72–77. doi: 10.1016/0003-2697(89)90274-1. [DOI] [PubMed] [Google Scholar]
- Jonáková V., Kraus M., Veselský L., Cechová D., Bezouska K., Tichá M. Spermadhesins of the AQN and AWN families, DQH sperm surface protein and HNK protein in the heparin-binding fraction of boar seminal plasma. J Reprod Fertil. 1998 Sep;114(1):25–34. doi: 10.1530/jrf.0.1140025. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Plucienniczak G., Jagiello A., Plucienniczak A., Holody D., Strzezek J. Cloning of complementary DNA encoding the pB1 component of the 54-kilodalton glycoprotein of boar seminal plasma. Mol Reprod Dev. 1999 Mar;52(3):303–309. doi: 10.1002/(SICI)1098-2795(199903)52:3<303::AID-MRD8>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
- Rüegg U. T., Rudinger J. Reductive cleavage of cystine disulfides with tributylphosphine. Methods Enzymol. 1977;47:111–116. doi: 10.1016/0076-6879(77)47012-5. [DOI] [PubMed] [Google Scholar]
- Seidah N. G., Manjunath P., Rochemont J., Sairam M. R., Chrétien M. Complete amino acid sequence of BSP-A3 from bovine seminal plasma. Homology to PDC-109 and to the collagen-binding domain of fibronectin. Biochem J. 1987 Apr 1;243(1):195–203. doi: 10.1042/bj2430195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sojar H. T., Bahl O. P. Chemical deglycosylation of glycoproteins. Methods Enzymol. 1987;138:341–350. doi: 10.1016/0076-6879(87)38029-2. [DOI] [PubMed] [Google Scholar]
- Tichá M., Kraus M., Cechová D., Jonáková V. Saccharide-binding properties of boar AQN spermadhesins and DQH sperm surface protein. Folia Biol (Praha) 1998;44(1):15–21. [PubMed] [Google Scholar]
- Töpfer-Petersen E., Calvete J. J., Sanz L., Sinowatz F. Carbohydrate-and heparin-binding proteins in mammalian fertilization. Andrologia. 1995 Nov-Dec;27(6):303–324. doi: 10.1111/j.1439-0272.1995.tb01366.x. [DOI] [PubMed] [Google Scholar]