Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jul;8(7):1500–1504. doi: 10.1110/ps.8.7.1500

Heat capacity change for ribonuclease A folding.

C N Pace 1, G R Grimsley 1, S T Thomas 1, G I Makhatadze 1
PMCID: PMC2144378  PMID: 10422839

Abstract

The change in heat capacity deltaCp for the folding of ribonuclease A was determined using differential scanning calorimetry and thermal denaturation curves. The methods gave equivalent results, deltaCp = 1.15+/-0.08 kcal mol(-1) K(-1). Estimates of the conformational stability of ribonuclease A based on these results from thermal unfolding are in good agreement with estimates from urea unfolding analyzed using the linear extrapolation method.

Full Text

The Full Text of this article is available as a PDF (105.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. L., Pielak G. J. Baseline length and automated fitting of denaturation data. Protein Sci. 1998 May;7(5):1262–1263. doi: 10.1002/pro.5560070524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnold U., Ulbrich-Hofmann R. Kinetic and thermodynamic thermal stabilities of ribonuclease A and ribonuclease B. Biochemistry. 1997 Feb 25;36(8):2166–2172. doi: 10.1021/bi962723u. [DOI] [PubMed] [Google Scholar]
  3. Baskakov I. V., Bolen D. W. Monitoring the sizes of denatured ensembles of staphylococcal nuclease proteins: implications regarding m values, intermediates, and thermodynamics. Biochemistry. 1998 Dec 22;37(51):18010–18017. doi: 10.1021/bi981849j. [DOI] [PubMed] [Google Scholar]
  4. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  5. Brandts J. F., Hunt L. The thermodynamics of protein denaturation. 3. The denaturation of ribonuclease in water and in aqueous urea and aqueous ethanol mixtures. J Am Chem Soc. 1967 Sep 13;89(19):4826–4838. doi: 10.1021/ja00995a002. [DOI] [PubMed] [Google Scholar]
  6. Carra J. H., Anderson E. A., Privalov P. L. Three-state thermodynamic analysis of the denaturation of staphylococcal nuclease mutants. Biochemistry. 1994 Sep 6;33(35):10842–10850. doi: 10.1021/bi00201a035. [DOI] [PubMed] [Google Scholar]
  7. Catanzano F., Graziano G., Capasso S., Barone G. Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A. Protein Sci. 1997 Aug;6(8):1682–1693. doi: 10.1002/pro.5560060808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chiti F., van Nuland N. A., Taddei N., Magherini F., Stefani M., Ramponi G., Dobson C. M. Conformational stability of muscle acylphosphatase: the role of temperature, denaturant concentration, and pH. Biochemistry. 1998 Feb 3;37(5):1447–1455. doi: 10.1021/bi971692f. [DOI] [PubMed] [Google Scholar]
  9. Fujita Y., Noda Y. Effect of reductive alkylation on thermal stability of ribonuclease A and chymotrypsinogen A. Int J Pept Protein Res. 1991 Nov;38(5):445–452. doi: 10.1111/j.1399-3011.1991.tb01525.x. [DOI] [PubMed] [Google Scholar]
  10. Grantcharova V. P., Baker D. Folding dynamics of the src SH3 domain. Biochemistry. 1997 Dec 16;36(50):15685–15692. doi: 10.1021/bi971786p. [DOI] [PubMed] [Google Scholar]
  11. Greene R. F., Jr, Pace C. N. Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. J Biol Chem. 1974 Sep 10;249(17):5388–5393. [PubMed] [Google Scholar]
  12. Griko Y. V., Freire E., Privalov P. L. Energetics of the alpha-lactalbumin states: a calorimetric and statistical thermodynamic study. Biochemistry. 1994 Feb 22;33(7):1889–1899. doi: 10.1021/bi00173a036. [DOI] [PubMed] [Google Scholar]
  13. Griko Y. V., Privalov P. L. Calorimetric study of the heat and cold denaturation of beta-lactoglobulin. Biochemistry. 1992 Sep 22;31(37):8810–8815. doi: 10.1021/bi00152a017. [DOI] [PubMed] [Google Scholar]
  14. Griko Y. V., Privalov P. L. Thermodynamic puzzle of apomyoglobin unfolding. J Mol Biol. 1994 Jan 28;235(4):1318–1325. doi: 10.1006/jmbi.1994.1085. [DOI] [PubMed] [Google Scholar]
  15. Hawley S. A. Reversible pressure--temperature denaturation of chymotrypsinogen. Biochemistry. 1971 Jun 22;10(13):2436–2442. doi: 10.1021/bi00789a002. [DOI] [PubMed] [Google Scholar]
  16. Hinz H. J., Vogl T., Meyer R. An alternative interpretation of the heat capacity changes associated with protein unfolding. Biophys Chem. 1994 Nov;52(3):275–285. doi: 10.1016/0301-4622(94)00098-5. [DOI] [PubMed] [Google Scholar]
  17. Jackson W. M., Brandts J. F. Thermodynamics of protein denaturation. A calorimetric study of the reversible denaturation of chymotrypsinogen and conclusions regarding the accuracy of the two-state approximation. Biochemistry. 1970 May 26;9(11):2294–2301. doi: 10.1021/bi00813a011. [DOI] [PubMed] [Google Scholar]
  18. Kuhlman B., Raleigh D. P. Global analysis of the thermal and chemical denaturation of the N-terminal domain of the ribosomal protein L9 in H2O and D2O. Determination of the thermodynamic parameters, deltaH(o), deltaS(o), and deltaC(o)p and evaluation of solvent isotope effects. Protein Sci. 1998 Nov;7(11):2405–2412. doi: 10.1002/pro.5560071118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liu Y., Sturtevant J. M. The observed change in heat capacity accompanying the thermal unfolding of proteins depends on the composition of the solution and on the method employed to change the temperature of unfolding. Biochemistry. 1996 Mar 5;35(9):3059–3062. doi: 10.1021/bi952198j. [DOI] [PubMed] [Google Scholar]
  20. Makhatadze G. I., Clore G. M., Gronenborn A. M. Solvent isotope effect and protein stability. Nat Struct Biol. 1995 Oct;2(10):852–855. doi: 10.1038/nsb1095-852. [DOI] [PubMed] [Google Scholar]
  21. Makhatadze G. I., Privalov P. L. Energetics of protein structure. Adv Protein Chem. 1995;47:307–425. doi: 10.1016/s0065-3233(08)60548-3. [DOI] [PubMed] [Google Scholar]
  22. Makhatadze G. I., Privalov P. L. Protein interactions with urea and guanidinium chloride. A calorimetric study. J Mol Biol. 1992 Jul 20;226(2):491–505. doi: 10.1016/0022-2836(92)90963-k. [DOI] [PubMed] [Google Scholar]
  23. McCrary B. S., Bedell J., Edmondson S. P., Shriver J. W. Linkage of protonation and anion binding to the folding of Sac7d. J Mol Biol. 1998 Feb 13;276(1):203–224. doi: 10.1006/jmbi.1998.1500. [DOI] [PubMed] [Google Scholar]
  24. Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nicholson E. M., Scholtz J. M. Conformational stability of the Escherichia coli HPr protein: test of the linear extrapolation method and a thermodynamic characterization of cold denaturation. Biochemistry. 1996 Sep 3;35(35):11369–11378. doi: 10.1021/bi960863y. [DOI] [PubMed] [Google Scholar]
  26. Pace C. N., Hebert E. J., Shaw K. L., Schell D., Both V., Krajcikova D., Sevcik J., Wilson K. S., Dauter Z., Hartley R. W. Conformational stability and thermodynamics of folding of ribonucleases Sa, Sa2 and Sa3. J Mol Biol. 1998 May 29;279(1):271–286. doi: 10.1006/jmbi.1998.1760. [DOI] [PubMed] [Google Scholar]
  27. Pace C. N., Laurents D. V. A new method for determining the heat capacity change for protein folding. Biochemistry. 1989 Mar 21;28(6):2520–2525. doi: 10.1021/bi00432a026. [DOI] [PubMed] [Google Scholar]
  28. Pace C. N., Laurents D. V., Thomson J. A. pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1. Biochemistry. 1990 Mar 13;29(10):2564–2572. doi: 10.1021/bi00462a019. [DOI] [PubMed] [Google Scholar]
  29. Pace C. N. Measuring and increasing protein stability. Trends Biotechnol. 1990 Apr;8(4):93–98. doi: 10.1016/0167-7799(90)90146-o. [DOI] [PubMed] [Google Scholar]
  30. Pace N. C., Tanford C. Thermodynamics of the unfolding of beta-lactoglobulin A in aqueous urea solutions between 5 and 55 degrees. Biochemistry. 1968 Jan;7(1):198–208. doi: 10.1021/bi00841a025. [DOI] [PubMed] [Google Scholar]
  31. Pfeil W., Privalov P. L. Thermodynamic investigations of proteins. I. Standard functions for proteins with lysozyme as an example. Biophys Chem. 1976 Jan;4(1):23–32. doi: 10.1016/0301-4622(76)80003-8. [DOI] [PubMed] [Google Scholar]
  32. Plotnikov V. V., Brandts J. M., Lin L. N., Brandts J. F. A new ultrasensitive scanning calorimeter. Anal Biochem. 1997 Aug 1;250(2):237–244. doi: 10.1006/abio.1997.2236. [DOI] [PubMed] [Google Scholar]
  33. Privalov P. L. Cold denaturation of proteins. Crit Rev Biochem Mol Biol. 1990;25(4):281–305. doi: 10.3109/10409239009090612. [DOI] [PubMed] [Google Scholar]
  34. Privalov P. L., Tiktopulo E. I., Khechinashvili N. N. Calorimetric investigation of ribonuclease thermal denaturation. Int J Pept Protein Res. 1973;5(4):229–237. doi: 10.1111/j.1399-3011.1973.tb03457.x. [DOI] [PubMed] [Google Scholar]
  35. Salahuddin A., Tanford C. Thermodynamics of the denaturation of ribonuclease by guanidine hydrochloride. Biochemistry. 1970 Mar 17;9(6):1342–1347. doi: 10.1021/bi00808a007. [DOI] [PubMed] [Google Scholar]
  36. Scholtz J. M. Conformational stability of HPr: the histidine-containing phosphocarrier protein from Bacillus subtilis. Protein Sci. 1995 Jan;4(1):35–43. doi: 10.1002/pro.5560040106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shiao D. F., Lumry R., Fahey J. Studies of the chymotrypsinogen family of proteins. XI. Heat-capacity changes accompanying reversible thermal unfolding of proteins. J Am Chem Soc. 1971 Apr 21;93(8):2024–2035. doi: 10.1021/ja00737a030. [DOI] [PubMed] [Google Scholar]
  38. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  39. Yamaguchi T., Yamada H., Akasaka K. Thermodynamics of unfolding of ribonuclease A under high pressure. A study by proton NMR. J Mol Biol. 1995 Jul 28;250(5):689–694. doi: 10.1006/jmbi.1995.0408. [DOI] [PubMed] [Google Scholar]
  40. Yao M., Bolen D. W. How valid are denaturant-induced unfolding free energy measurements? Level of conformance to common assumptions over an extended range of ribonuclease A stability. Biochemistry. 1995 Mar 21;34(11):3771–3781. doi: 10.1021/bi00011a035. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES