Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jul;8(7):1410–1422. doi: 10.1110/ps.8.7.1410

Centrosymmetric bilayers in the 0.75 A resolution structure of a designed alpha-helical peptide, D,L-Alpha-1.

W R Patterson 1, D H Anderson 1, W F DeGrado 1, D Cascio 1, D Eisenberg 1
PMCID: PMC2144380  PMID: 10422829

Abstract

We report the 0.75 A crystal structure of a racemic mixture of the 12-residue designed peptide "Alpha-1" (Acetyl-ELLKKLLEELKG), the L-enantiomer of which is described in the accompanying paper. Equivalent solutions of the centrosymmetric bilayers were determined by two direct phasing programs in space groups P1 and P1bar. The unit cell contains two L-alpha-helices and two D-alpha-helices. The columnar-sheet bilayer motif seen in L-Alpha-1 is maintained in the D,L-Alpha-1 structure except that each sheet of head-to-tail helices is composed of one enantiomer and is related to its neighboring sheets by inversion symmetry. Comparison to the L-Alpha-1 structure provides further insight into peptide design. The high resolution and small asymmetric unit allowed building an intricate model (R = 13.1%, Rfree = 14.5%) that incorporates much of the discrete disorder of peptide and solvent. Ethanolamine and 2-methyl-2,4-pentanediol (MPD) molecules bind near helix termini. Rigid body analysis identifies sites of restricted displacements and torsions. Side-chain discrete disorder propagates into the backbone of one helix but not the other. Although no side chain in Alpha-1 is rigid, the environments in the crystal restrict some of them to no or only one active torsion.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. H., Weiss M. S., Eisenberg D. A challenging case for protein crystal structure determination: the mating pheromone Er-1 from Euplotes raikovi. Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):469–480. doi: 10.1107/S0907444995014235. [DOI] [PubMed] [Google Scholar]
  2. Anderson D. H., Weiss M. S., Eisenberg D. Charges, hydrogen bonds, and correlated motions in the 1 A resolution refined structure of the mating pheromone Er-1 from Euplotes raikovi. J Mol Biol. 1997 Oct 24;273(2):479–500. doi: 10.1006/jmbi.1997.1318. [DOI] [PubMed] [Google Scholar]
  3. Berg J. M., Goffeney N. W. Centrosymmetric crystals of biomolecules: the racemate method. Methods Enzymol. 1997;276:619–627. [PubMed] [Google Scholar]
  4. Blessing R. H., Guo D. Y., Langs D. A. Statistical expectation value of the Debye-Waller factor and E(hkl) values for macromolecular crystals. Acta Crystallogr D Biol Crystallogr. 1996 Mar 1;52(Pt 2):257–266. doi: 10.1107/S0907444995014053. [DOI] [PubMed] [Google Scholar]
  5. Conti E., Uy M., Leighton L., Blobel G., Kuriyan J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell. 1998 Jul 24;94(2):193–204. doi: 10.1016/s0092-8674(00)81419-1. [DOI] [PubMed] [Google Scholar]
  6. Eisenberg D., Wilcox W., Eshita S. M., Pryciak P. M., Ho S. P., DeGrado W. F. The design, synthesis, and crystallization of an alpha-helical peptide. Proteins. 1986 Sep;1(1):16–22. doi: 10.1002/prot.340010105. [DOI] [PubMed] [Google Scholar]
  7. Hill C. P., Anderson D. H., Wesson L., DeGrado W. F., Eisenberg D. Crystal structure of alpha 1: implications for protein design. Science. 1990 Aug 3;249(4968):543–546. doi: 10.1126/science.2382133. [DOI] [PubMed] [Google Scholar]
  8. Hooft R. W., Vriend G., Sander C., Abola E. E. Errors in protein structures. Nature. 1996 May 23;381(6580):272–272. doi: 10.1038/381272a0. [DOI] [PubMed] [Google Scholar]
  9. Ogihara N. L., Weiss M. S., Degrado W. F., Eisenberg D. The crystal structure of the designed trimeric coiled coil coil-VaLd: implications for engineering crystals and supramolecular assemblies. Protein Sci. 1997 Jan;6(1):80–88. doi: 10.1002/pro.5560060109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Petka W. A., Harden J. L., McGrath K. P., Wirtz D., Tirrell D. A. Reversible hydrogels from self-assembling artificial proteins. Science. 1998 Jul 17;281(5375):389–392. doi: 10.1126/science.281.5375.389. [DOI] [PubMed] [Google Scholar]
  11. Privé G. G., Anderson D. H., Wesson L., Cascio D., Eisenberg D. Packed protein bilayers in the 0.90 A resolution structure of a designed alpha helical bundle. Protein Sci. 1999 Jul;8(7):1400–1409. doi: 10.1110/ps.8.7.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Smith J. L., Hendrickson W. A., Honzatko R. B., Sheriff S. Structural heterogeneity in protein crystals. Biochemistry. 1986 Sep 9;25(18):5018–5027. doi: 10.1021/bi00366a008. [DOI] [PubMed] [Google Scholar]
  13. Wukovitz S. W., Yeates T. O. Why protein crystals favour some space-groups over others. Nat Struct Biol. 1995 Dec;2(12):1062–1067. doi: 10.1038/nsb1295-1062. [DOI] [PubMed] [Google Scholar]
  14. Yamano A., Teeter M. M. Correlated disorder of the pure Pro22/Leu25 form of crambin at 150 K refined to 1.05-A resolution. J Biol Chem. 1994 May 13;269(19):13956–13965. [PubMed] [Google Scholar]
  15. Yoder M. D., Keen N. T., Jurnak F. New domain motif: the structure of pectate lyase C, a secreted plant virulence factor. Science. 1993 Jun 4;260(5113):1503–1507. doi: 10.1126/science.8502994. [DOI] [PubMed] [Google Scholar]
  16. Zawadzke L. E., Berg J. M. The structure of a centrosymmetric protein crystal. Proteins. 1993 Jul;16(3):301–305. doi: 10.1002/prot.340160308. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES