Abstract
The mechanism by which the type Ialpha regulatory subunit (RIalpha) of cAMP-dependent protein kinase is localized to cell membranes is unknown. To determine if structural modification of RIalpha is important for membrane association, both beef skeletal muscle cytosolic RI and beef heart membrane-associated RI were characterized by electrospray ionization mass spectrometry. Total sequence coverage was 98% for both the membrane-associated and cytosolic forms of RI after digestion with AspN protease or trypsin. Sequence data indicated that membrane-associated and cytosolic forms of RI were the same RIalpha gene product. A single RIalpha phosphorylation site was identified at Ser81 located near the autoinhibitory domain of both membrane-associated and cytosolic RIalpha. Because both R subunit preparations were 30-40% phosphorylated, this post-translational modification could not be responsible for the membrane compartmentation of the majority of RIalpha. Mass spectrometry also indicated that membrane-associated RIalpha had a higher extent of disulfide bond formation in the amino-terminal dimerization domain. No other structural differences between cytosolic and membrane-associated RIalpha were detected. Consistent with these data, masses of the intact proteins were identical by LCQ mass spectrometry. Lack of detectable structural differences between membrane-associated and cytosolic RIalpha strongly suggests an interaction between RIalpha and anchoring proteins or membrane lipids as more likely mechanisms for explaining RIalpha membrane association in the heart.
Full Text
The Full Text of this article is available as a PDF (285.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angelo R., Rubin C. S. Molecular characterization of an anchor protein (AKAPCE) that binds the RI subunit (RCE) of type I protein kinase A from Caenorhabditis elegans. J Biol Chem. 1998 Jun 5;273(23):14633–14643. doi: 10.1074/jbc.273.23.14633. [DOI] [PubMed] [Google Scholar]
- Brandon E. P., Idzerda R. L., McKnight G. S. PKA isoforms, neural pathways, and behaviour: making the connection. Curr Opin Neurobiol. 1997 Jun;7(3):397–403. doi: 10.1016/s0959-4388(97)80069-4. [DOI] [PubMed] [Google Scholar]
- Bubis J., Vedvick T. S., Taylor S. S. Antiparallel alignment of the two protomers of the regulatory subunit dimer of cAMP-dependent protein kinase I. J Biol Chem. 1987 Nov 5;262(31):14961–14966. [PubMed] [Google Scholar]
- Carmichael D. F., Geahlen R. L., Allen S. M., Krebs E. G. Type II regulatory subunit of cAMP-dependent protein kinase. Phosphorylation by casein kinase II at a site that is also phosphorylated in vivo. J Biol Chem. 1982 Sep 10;257(17):10440–10445. [PubMed] [Google Scholar]
- Corbin J. D., Sugden P. H., Lincoln T. M., Keely S. L. Compartmentalization of adenosine 3':5'-monophosphate and adenosine 3':5'-monophosphate-dependent protein kinase in heart tissue. J Biol Chem. 1977 Jun 10;252(11):3854–3861. [PubMed] [Google Scholar]
- Dell'Acqua M. L., Scott J. D. Protein kinase A anchoring. J Biol Chem. 1997 May 16;272(20):12881–12884. doi: 10.1074/jbc.272.20.12881. [DOI] [PubMed] [Google Scholar]
- Dills W. L., Goodwin C. D., Lincoln T. M., Beavo J. A., Bechtel P. J., Corbin J. D., Krebs E. G. Purification of cyclic nucleotide receptor proteins by cyclic nucleotide affinity chromatography. Adv Cyclic Nucleotide Res. 1979;10:199–217. [PubMed] [Google Scholar]
- Døskeland S. O., Maronde E., Gjertsen B. T. The genetic subtypes of cAMP-dependent protein kinase--functionally different or redundant? Biochim Biophys Acta. 1993 Sep 13;1178(3):249–258. doi: 10.1016/0167-4889(93)90201-y. [DOI] [PubMed] [Google Scholar]
- Enan E., Matsumura F. Specific inhibition of calcineurin by type II synthetic pyrethroid insecticides. Biochem Pharmacol. 1992 Apr 15;43(8):1777–1784. doi: 10.1016/0006-2952(92)90710-z. [DOI] [PubMed] [Google Scholar]
- Fakata K. L., Swanson S. A., Vorce R. L., Stemmer P. M. Pyrethroid insecticides as phosphatase inhibitors. Biochem Pharmacol. 1998 Jun 15;55(12):2017–2022. doi: 10.1016/s0006-2952(98)00076-8. [DOI] [PubMed] [Google Scholar]
- Feller S. M., Ren R., Hanafusa H., Baltimore D. SH2 and SH3 domains as molecular adhesives: the interactions of Crk and Abl. Trends Biochem Sci. 1994 Nov;19(11):453–458. doi: 10.1016/0968-0004(94)90129-5. [DOI] [PubMed] [Google Scholar]
- Fraser I. D., Tavalin S. J., Lester L. B., Langeberg L. K., Westphal A. M., Dean R. A., Marrion N. V., Scott J. D. A novel lipid-anchored A-kinase Anchoring Protein facilitates cAMP-responsive membrane events. EMBO J. 1998 Apr 15;17(8):2261–2272. doi: 10.1093/emboj/17.8.2261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geahlen R. L., Allen S. M., Krebs E. G. Effect of phosphorylation on the regulatory subunit of the type I cAMP-dependent protein kinase. J Biol Chem. 1981 May 10;256(9):4536–4540. [PubMed] [Google Scholar]
- Geahlen R. L., Krebs E. G. Studies on the phosphorylation of the type I cAMP-dependent protein kinase. J Biol Chem. 1980 Oct 10;255(19):9375–9379. [PubMed] [Google Scholar]
- Gray P. C., Johnson B. D., Westenbroek R. E., Hays L. G., Yates J. R., 3rd, Scheuer T., Catterall W. A., Murphy B. J. Primary structure and function of an A kinase anchoring protein associated with calcium channels. Neuron. 1998 May;20(5):1017–1026. doi: 10.1016/s0896-6273(00)80482-1. [DOI] [PubMed] [Google Scholar]
- Hashimoto E., Takio K., Krebs E. G. Studies on the site in the regulatory subunit of type I cAMP-dependent protein kinase phosphorylated by cGMP-dependent protein kinase. J Biol Chem. 1981 Jun 10;256(11):5604–5607. [PubMed] [Google Scholar]
- Hasler P., Moore J. J., Kammer G. M. Human T lymphocyte cAMP-dependent protein kinase: subcellular distributions and activity ranges of type I and type II isozymes. FASEB J. 1992 Jun;6(9):2735–2741. doi: 10.1096/fasebj.6.9.1319361. [DOI] [PubMed] [Google Scholar]
- Hegde A. N., Goldberg A. L., Schwartz J. H. Regulatory subunits of cAMP-dependent protein kinases are degraded after conjugation to ubiquitin: a molecular mechanism underlying long-term synaptic plasticity. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7436–7440. doi: 10.1073/pnas.90.16.7436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hemmings B. A., Aitken A., Cohen P., Rymond M., Hofmann F. Phosphorylation of the type-II regulatory subunit of cyclic-AMP-dependent protein kinase by glycogen synthase kinase 3 and glycogen synthase kinase 5. Eur J Biochem. 1982 Oct;127(3):473–481. doi: 10.1111/j.1432-1033.1982.tb06896.x. [DOI] [PubMed] [Google Scholar]
- Huang L. J., Durick K., Weiner J. A., Chun J., Taylor S. S. D-AKAP2, a novel protein kinase A anchoring protein with a putative RGS domain. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11184–11189. doi: 10.1073/pnas.94.21.11184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang L. J., Durick K., Weiner J. A., Chun J., Taylor S. S. Identification of a novel protein kinase A anchoring protein that binds both type I and type II regulatory subunits. J Biol Chem. 1997 Mar 21;272(12):8057–8064. doi: 10.1074/jbc.272.12.8057. [DOI] [PubMed] [Google Scholar]
- Ito M., Feng J., Tsujino S., Inagaki N., Inagaki M., Tanaka J., Ichikawa K., Hartshorne D. J., Nakano T. Interaction of smooth muscle myosin phosphatase with phospholipids. Biochemistry. 1997 Jun 17;36(24):7607–7614. doi: 10.1021/bi9702647. [DOI] [PubMed] [Google Scholar]
- Kapphahn M. A., Shabb J. B. Contribution of the carboxyl-terminal regional of the cAMP-dependent protein kinase type I alpha regulatory subunit to cyclic nucleotide interactions. Arch Biochem Biophys. 1997 Dec 15;348(2):347–356. doi: 10.1006/abbi.1997.0431. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Li H. C. Activation of brain calcineurin phosphatase towards nonprotein phosphoesters by Ca2+, calmodulin, and Mg2+. J Biol Chem. 1984 Jul 25;259(14):8801–8807. [PubMed] [Google Scholar]
- Li Y. M., Mackintosh C., Casida J. E. Protein phosphatase 2A and its [3H]cantharidin/[3H]endothall thioanhydride binding site. Inhibitor specificity of cantharidin and ATP analogues. Biochem Pharmacol. 1993 Oct 19;46(8):1435–1443. doi: 10.1016/0006-2952(93)90109-a. [DOI] [PubMed] [Google Scholar]
- Lin R., Beauparlant P., Makris C., Meloche S., Hiscott J. Phosphorylation of IkappaBalpha in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Mol Cell Biol. 1996 Apr;16(4):1401–1409. doi: 10.1128/mcb.16.4.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milligan G., Parenti M., Magee A. I. The dynamic role of palmitoylation in signal transduction. Trends Biochem Sci. 1995 May;20(5):181–187. doi: 10.1016/s0968-0004(00)89004-0. [DOI] [PubMed] [Google Scholar]
- Orr J. W., Newton A. C. Interaction of protein kinase C with phosphatidylserine. 2. Specificity and regulation. Biochemistry. 1992 May 19;31(19):4667–4673. doi: 10.1021/bi00134a019. [DOI] [PubMed] [Google Scholar]
- Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
- Pepperberg D. R., Morrison D. F., O'Brien P. J. Depalmitoylation of rhodopsin with hydroxylamine. Methods Enzymol. 1995;250:348–361. doi: 10.1016/0076-6879(95)50084-7. [DOI] [PubMed] [Google Scholar]
- Pondaven P., Meijer L. Protein phosphorylation and oocyte maturation. I. Induction of starfish oocyte maturation by intracellular microinjection of a phosphatase inhibitor, alpha-naphthylphosphate. Exp Cell Res. 1986 Apr;163(2):477–488. doi: 10.1016/0014-4827(86)90078-9. [DOI] [PubMed] [Google Scholar]
- Rannels S. R., Beasley A., Corbin J. D. Regulatory subunits of bovine heart and rabbit skeletal muscle cAMP-dependent protein kinase isozymes. Methods Enzymol. 1983;99:55–62. doi: 10.1016/0076-6879(83)99040-7. [DOI] [PubMed] [Google Scholar]
- Rechsteiner M., Rogers S. W. PEST sequences and regulation by proteolysis. Trends Biochem Sci. 1996 Jul;21(7):267–271. [PubMed] [Google Scholar]
- Reinitz C. A., Bianco R. A., Shabb J. B. Compartmentation of the type I regulatory subunit of cAMP-dependent protein kinase in cardiac ventricular muscle. Arch Biochem Biophys. 1997 Dec 15;348(2):391–402. doi: 10.1006/abbi.1997.0401. [DOI] [PubMed] [Google Scholar]
- Resing K. A., Ahn N. G. Protein phosphorylation analysis by electrospray ionization-mass spectrometry. Methods Enzymol. 1997;283:29–44. doi: 10.1016/s0076-6879(97)83005-4. [DOI] [PubMed] [Google Scholar]
- Resing K. A., Mansour S. J., Hermann A. S., Johnson R. S., Candia J. M., Fukasawa K., Vande Woude G. F., Ahn N. G. Determination of v-Mos-catalyzed phosphorylation sites and autophosphorylation sites on MAP kinase kinase by ESI/MS. Biochemistry. 1995 Feb 28;34(8):2610–2620. doi: 10.1021/bi00008a027. [DOI] [PubMed] [Google Scholar]
- Robinson M. L., Wallert M. A., Reinitz C. A., Shabb J. B. Association of the type I regulatory subunit of cAMP-dependent protein kinase with cardiac myocyte sarcolemma. Arch Biochem Biophys. 1996 Jun 1;330(1):181–187. doi: 10.1006/abbi.1996.0240. [DOI] [PubMed] [Google Scholar]
- Rogers S., Wells R., Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986 Oct 17;234(4774):364–368. doi: 10.1126/science.2876518. [DOI] [PubMed] [Google Scholar]
- Rubin C. S. A kinase anchor proteins and the intracellular targeting of signals carried by cyclic AMP. Biochim Biophys Acta. 1994 Dec 30;1224(3):467–479. [PubMed] [Google Scholar]
- Rubin C. S. Characterization and comparison of membrane-associated and cytosolic cAMP-dependent protein kinases. Studies on human erythrocyte protein kinases. J Biol Chem. 1979 Dec 25;254(24):12439–12449. [PubMed] [Google Scholar]
- Russell J. L., Steinberg R. A. Phosphorylation of regulatory subunit of type I cyclic AMP-dependent protein kinase: biphasic effects of cyclic AMP in intact S49 mouse lymphoma cells. J Cell Physiol. 1987 Feb;130(2):207–213. doi: 10.1002/jcp.1041300206. [DOI] [PubMed] [Google Scholar]
- Schwarz E. M., Van Antwerp D., Verma I. M. Constitutive phosphorylation of IkappaBalpha by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IkappaBalpha. Mol Cell Biol. 1996 Jul;16(7):3554–3559. doi: 10.1128/mcb.16.7.3554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skålhegg B. S., Taskén K., Hansson V., Huitfeldt H. S., Jahnsen T., Lea T. Location of cAMP-dependent protein kinase type I with the TCR-CD3 complex. Science. 1994 Jan 7;263(5143):84–87. doi: 10.1126/science.8272870. [DOI] [PubMed] [Google Scholar]
- Steinberg R. A., Agard D. A. Studies on the phosphorylation and synthesis of type I regulatory subunit of cyclic AMP-dependent protein kinase in intact S49 mouse lymphoma cells. J Biol Chem. 1981 Nov 10;256(21):11356–11364. [PubMed] [Google Scholar]
- Steinberg R. A., Agard D. A. Turnover of regulatory subunit of cyclic AMP-dependent protein kinase in S49 mouse lymphoma cells. Regulation by catalytic subunit and analogs of cyclic AMP. J Biol Chem. 1981 Nov 10;256(21):10731–10734. [PubMed] [Google Scholar]
- Steinberg R. A. Sites of phosphorylation and mutation in regulatory subunit of cyclic AMP-dependent protein kinase from S49 mouse lymphoma cells: mapping to structural domains. J Cell Biol. 1983 Oct;97(4):1072–1080. doi: 10.1083/jcb.97.4.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinberg R. A., van Daalen Wetters T., Coffino P. Kinase-negative mutants of S49 mouse lymphoma cells carry a trans-dominant mutation affecting expression of cAMP-dependent protein kinase. Cell. 1978 Dec;15(4):1351–1361. doi: 10.1016/0092-8674(78)90060-0. [DOI] [PubMed] [Google Scholar]
- Sugden P. H., Corbin J. D. Adenosine 3':5'-cyclic monophosphate-binding proteins in bovine and rat tissues. Biochem J. 1976 Nov;159(2):423–437. doi: 10.1042/bj1590423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Titani K., Sasagawa T., Ericsson L. H., Kumar S., Smith S. B., Krebs E. G., Walsh K. A. Amino acid sequence of the regulatory subunit of bovine type I adenosine cyclic 3',5'-phosphate dependent protein kinase. Biochemistry. 1984 Aug 28;23(18):4193–4199. doi: 10.1021/bi00313a028. [DOI] [PubMed] [Google Scholar]
- Tortora G., Damiano V., Bianco C., Baldassarre G., Bianco A. R., Lanfrancone L., Pelicci P. G., Ciardiello F. The RIalpha subunit of protein kinase A (PKA) binds to Grb2 and allows PKA interaction with the activated EGF-receptor. Oncogene. 1997 Feb 27;14(8):923–928. doi: 10.1038/sj.onc.1200906. [DOI] [PubMed] [Google Scholar]
- Wartmann M., Hofer P., Turowski P., Saltiel A. R., Hynes N. E. Negative modulation of membrane localization of the Raf-1 protein kinase by hyperphosphorylation. J Biol Chem. 1997 Feb 14;272(7):3915–3923. doi: 10.1074/jbc.272.7.3915. [DOI] [PubMed] [Google Scholar]
- Wedegaertner P. B., Wilson P. T., Bourne H. R. Lipid modifications of trimeric G proteins. J Biol Chem. 1995 Jan 13;270(2):503–506. doi: 10.1074/jbc.270.2.503. [DOI] [PubMed] [Google Scholar]
- Yaglom J., Linskens M. H., Sadis S., Rubin D. M., Futcher B., Finley D. p34Cdc28-mediated control of Cln3 cyclin degradation. Mol Cell Biol. 1995 Feb;15(2):731–741. doi: 10.1128/mcb.15.2.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang W. L., Iacono L., Tang W. M., Chin K. V. Novel function of the regulatory subunit of protein kinase A: regulation of cytochrome c oxidase activity and cytochrome c release. Biochemistry. 1998 Oct 6;37(40):14175–14180. doi: 10.1021/bi981402a. [DOI] [PubMed] [Google Scholar]
- Zhang G., Kazanietz M. G., Blumberg P. M., Hurley J. H. Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester. Cell. 1995 Jun 16;81(6):917–924. doi: 10.1016/0092-8674(95)90011-x. [DOI] [PubMed] [Google Scholar]