Abstract
A 12-residue peptide designed to form an alpha-helix and self-associate into an antiparallel 4-alpha-helical bundle yields a 0.9 A crystal structure revealing unanticipated features. The structure was determined by direct phasing with the "Shake-and-Bake" program, and contains four crystallographically distinct 12-mer peptide molecules plus solvent for a total of 479 atoms. The crystal is formed from nearly ideal alpha-helices hydrogen bonded head-to-tail into columns, which in turn pack side-by-side into sheets spanning the width of the crystal. Within each sheet, the alpha-helices run antiparallel and are closely spaced (9-10 A center-to-center). The sheets are more loosely packed against each other (13-14 A between helix centers). Each sheet is amphiphilic: apolar leucine side chains project from one face, charged lysine and glutamate side chains from the other face. The sheets are stacked with two polar faces opposing and two apolar faces opposing. The result is a periodic biomaterial composed of packed protein bilayers, with alternating polar and apolar interfaces. All of the 30 water molecules in the unit cell lie in the polar interface or between the stacked termini of helices. A section through the sheet reveals that the helices packed at the apolar interface resemble the four-alpha-helical bundle of the design, but the helices overhang parts of the adjacent bundles, and the helix crossing angles are less steep than intended (7-11 degrees rather than 18 degrees).
Full Text
The Full Text of this article is available as a PDF (3.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson D. H., Weiss M. S., Eisenberg D. A challenging case for protein crystal structure determination: the mating pheromone Er-1 from Euplotes raikovi. Acta Crystallogr D Biol Crystallogr. 1996 May 1;52(Pt 3):469–480. doi: 10.1107/S0907444995014235. [DOI] [PubMed] [Google Scholar]
- Betz SF, Raleigh DP, DeGrado WF, Lovejoy B, Anderson D, Ogihara N, Eisenberg D. Crystallization of a designed peptide from a molten globule ensemble. Fold Des. 1995;1(1):57–64. [PubMed] [Google Scholar]
- Blessing R. H., Guo D. Y., Langs D. A. Statistical expectation value of the Debye-Waller factor and E(hkl) values for macromolecular crystals. Acta Crystallogr D Biol Crystallogr. 1996 Mar 1;52(Pt 2):257–266. doi: 10.1107/S0907444995014053. [DOI] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
- Eisenberg D., Wilcox W., Eshita S. M., Pryciak P. M., Ho S. P., DeGrado W. F. The design, synthesis, and crystallization of an alpha-helical peptide. Proteins. 1986 Sep;1(1):16–22. doi: 10.1002/prot.340010105. [DOI] [PubMed] [Google Scholar]
- Hill C. P., Anderson D. H., Wesson L., DeGrado W. F., Eisenberg D. Crystal structure of alpha 1: implications for protein design. Science. 1990 Aug 3;249(4968):543–546. doi: 10.1126/science.2382133. [DOI] [PubMed] [Google Scholar]
- Hooft R. W., Vriend G., Sander C., Abola E. E. Errors in protein structures. Nature. 1996 May 23;381(6580):272–272. doi: 10.1038/381272a0. [DOI] [PubMed] [Google Scholar]
- Jones S., Thornton J. M. Principles of protein-protein interactions. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):13–20. doi: 10.1073/pnas.93.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karle I. L., Flippen-Anderson J. L., Uma K., Balaram P. Parallel zippers formed by alpha-helical peptide columns in crystals of Boc-Aib-Glu(OBzl)-Leu-Aib-Ala-Leu-Aib-Ala-Lys(Z)-Aib-OMe. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7921–7925. doi: 10.1073/pnas.87.20.7921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- Miller R., DeTitta G. T., Jones R., Langs D. A., Weeks C. M., Hauptman H. A. On the application of the minimal principle to solve unknown structures. Science. 1993 Mar 5;259(5100):1430–1433. doi: 10.1126/science.8451639. [DOI] [PubMed] [Google Scholar]
- Ogihara N. L., Weiss M. S., Degrado W. F., Eisenberg D. The crystal structure of the designed trimeric coiled coil coil-VaLd: implications for engineering crystals and supramolecular assemblies. Protein Sci. 1997 Jan;6(1):80–88. doi: 10.1002/pro.5560060109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patterson W. R., Anderson D. H., DeGrado W. F., Cascio D., Eisenberg D. Centrosymmetric bilayers in the 0.75 A resolution structure of a designed alpha-helical peptide, D,L-Alpha-1. Protein Sci. 1999 Jul;8(7):1410–1422. doi: 10.1110/ps.8.7.1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schafmeister C. E., Miercke L. J., Stroud R. M. Structure at 2.5 A of a designed peptide that maintains solubility of membrane proteins. Science. 1993 Oct 29;262(5134):734–738. doi: 10.1126/science.8235592. [DOI] [PubMed] [Google Scholar]
- Smith J. L., Hendrickson W. A., Honzatko R. B., Sheriff S. Structural heterogeneity in protein crystals. Biochemistry. 1986 Sep 9;25(18):5018–5027. doi: 10.1021/bi00366a008. [DOI] [PubMed] [Google Scholar]
- Taylor K. S., Lou M. Z., Chin T. M., Yang N. C., Garavito R. M. A novel, multilayer structure of a helical peptide. Protein Sci. 1996 Mar;5(3):414–421. doi: 10.1002/pro.5560050302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss M. S., Anderson D. H., Raffioni S., Bradshaw R. A., Ortenzi C., Luporini P., Eisenberg D. A cooperative model for receptor recognition and cell adhesion: evidence from the molecular packing in the 1.6-A crystal structure of the pheromone Er-1 from the ciliated protozoan Euplotes raikovi. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10172–10176. doi: 10.1073/pnas.92.22.10172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wen D., Laursen R. A. Structure-function relationships in an antifreeze polypeptide. The role of neutral, polar amino acids. J Biol Chem. 1992 Jul 15;267(20):14102–14108. [PubMed] [Google Scholar]