Abstract
Desulforedoxin (Dx), isolated from the sulfate reducing bacterium Desulfovibrio gigas, is a small homodimeric (2 x 36 amino acids) protein. Each subunit contains a high-spin iron atom tetrahedrally bound to four cysteinyl sulfur atoms, a metal center similar to that found in rubredoxin (Rd) type proteins. The simplicity of the active center in Dx and the possibility of replacing the iron by other metals make this protein an attractive case for the crystallographic analysis of metal-substituted derivatives. This study extends the relevance of Dx to the bioinorganic chemistry field and is important to obtain model compounds that can mimic the four sulfur coordination of metals in biology. Metal replacement experiments were carried out by reconstituting the apoprotein with In3+, Ga3+, Cd2+, Hg2+, and Ni2+ salts. The In3+ and Ga3+ derivatives are isomorphous with the iron native protein; whereas Cd2+, Hg2+, and Ni2+ substituted Dx crystallized under different experimental conditions, yielding two additional crystal morphologies; their structures were determined by the molecular replacement method. A comparison of the three-dimensional structures for all metal derivatives shows that the overall secondary and tertiary structures are maintained, while some differences in metal coordination geometry occur, namely, bond lengths and angles of the metal with the sulfur ligands. These data are discussed in terms of the entatic state theory.
Full Text
The Full Text of this article is available as a PDF (246.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adman E., Watenpaugh K. D., Jensen L. H. NH---S hydrogen bonds in Peptococcus aerogenes ferredoxin, Clostridium pasteurianum rubredoxin, and Chromatium high potential iron protein. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4854–4858. doi: 10.1073/pnas.72.12.4854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Archer M., Huber R., Tavares P., Moura I., Moura J. J., Carrondo M. A., Sieker L. C., LeGall J., Romão M. J. Crystal structure of desulforedoxin from Desulfovibrio gigas determined at 1.8 A resolution: a novel non-heme iron protein structure. J Mol Biol. 1995 Sep 1;251(5):690–702. doi: 10.1006/jmbi.1995.0465. [DOI] [PubMed] [Google Scholar]
- Brumlik M. J., Leroy G., Bruschi M., Voordouw G. The nucleotide sequence of the Desulfovibrio gigas desulforedoxin gene indicates that the Desulfovibrio vulgaris rbo gene originated from a gene fusion event. J Bacteriol. 1990 Dec;172(12):7289–7292. doi: 10.1128/jb.172.12.7289-7292.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brumlik M. J., Voordouw G. Analysis of the transcriptional unit encoding the genes for rubredoxin (rub) and a putative rubredoxin oxidoreductase (rbo) in Desulfovibrio vulgaris Hildenborough. J Bacteriol. 1989 Sep;171(9):4996–5004. doi: 10.1128/jb.171.9.4996-5004.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen L. Q., Rose J. P., Breslow E., Yang D., Chang W. R., Furey W. F., Jr, Sax M., Wang B. C. Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 A determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4240–4244. doi: 10.1073/pnas.88.10.4240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czaja C., Litwiller R., Tomlinson A. J., Naylor S., Tavares P., LeGall J., Moura J. J., Moura I., Rusnak F. Expression of Desulfovibrio gigas desulforedoxin in Escherichia coli. Purification and characterization of mixed metal isoforms. J Biol Chem. 1995 Sep 1;270(35):20273–20277. doi: 10.1074/jbc.270.35.20273. [DOI] [PubMed] [Google Scholar]
- Dauter Z., Wilson K. S., Sieker L. C., Moulis J. M., Meyer J. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8836–8840. doi: 10.1073/pnas.93.17.8836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eidsness M. K., O'Dell S. E., Kurtz D. M., Jr, Robson R. L., Scott R. A. Expression of a synthetic gene coding for the amino acid sequence of Clostridium pasteurianum rubredoxin. Protein Eng. 1992 Jun;5(4):367–371. doi: 10.1093/protein/5.4.367. [DOI] [PubMed] [Google Scholar]
- Gomes C. M., Silva G., Oliveira S., LeGall J., Liu M. Y., Xavier A. V., Rodrigues-Pousada C., Teixeira M. Studies on the redox centers of the terminal oxidase from Desulfovibrio gigas and evidence for its interaction with rubredoxin. J Biol Chem. 1997 Sep 5;272(36):22502–22508. doi: 10.1074/jbc.272.36.22502. [DOI] [PubMed] [Google Scholar]
- Goodfellow B. J., Rusnak F., Moura I., Domke T., Moura J. J. NMR determination of the global structure of the 113Cd derivative of desulforedoxin: investigation of the hydrogen bonding pattern at the metal center. Protein Sci. 1998 Apr;7(4):928–937. doi: 10.1002/pro.5560070410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hausinger R. P. Mechanisms of metal ion incorporation into metalloproteins. Biofactors. 1990 Jul;2(3):179–184. [PubMed] [Google Scholar]
- Lane R. W., Ibers J. A., Frankel R. B., Papaefthymiou G. C., Holm R. H. Synthetic analogues of the active sites of iron-sulfur proteins. 14. Synthesis, properties, and structures of bis(o-xylyl-alpha,alpha'-dithiolato)ferrate(II, III) anions, analogues of oxidized and reduced rubredoxin sites. J Am Chem Soc. 1977 Jan 5;99(1):84–98. doi: 10.1021/ja00443a017. [DOI] [PubMed] [Google Scholar]
- Lovenberg W., Sobel B. E. Rubredoxin: a new electron transfer protein from Clostridium pasteurianum. Proc Natl Acad Sci U S A. 1965 Jul;54(1):193–199. doi: 10.1073/pnas.54.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
- Moura I., Bruschi M., Le Gall J., Moura J. J., Xavier A. V. Isolation and characterization of desulforedoxin, a new type of non-heme iron protein from Desulfovibrio gigas. Biochem Biophys Res Commun. 1977 Apr 25;75(4):1037–1044. doi: 10.1016/0006-291x(77)91486-3. [DOI] [PubMed] [Google Scholar]
- Moura I., Tavares P., Ravi N. Characterization of three proteins containing multiple iron sites: rubrerythrin, desulfoferrodoxin, and a protein containing a six-iron cluster. Methods Enzymol. 1994;243:216–240. doi: 10.1016/0076-6879(94)43017-9. [DOI] [PubMed] [Google Scholar]
- Moura I., Teixeira M., LeGall J., Moura J. J. Spectroscopic studies of cobalt and nickel substituted rubredoxin and desulforedoxin. J Inorg Biochem. 1991 Nov;44(2):127–139. doi: 10.1016/0162-0134(91)84025-5. [DOI] [PubMed] [Google Scholar]
- Peterson J. A., Kusunose M., Kusunose E., Coon M. J. Enzymatic omega-oxidation. II. Function of rubredoxin as the electron carrier in omega-hydroxylation. J Biol Chem. 1967 Oct 10;242(19):4334–4340. [PubMed] [Google Scholar]
- Petillot Y., Forest E., Mathieu I., Meyer J., Moulis J. M. Analysis, by electrospray ionization mass spectrometry, of several forms of Clostridium pasteurianum rubredoxin. Biochem J. 1993 Dec 15;296(Pt 3):657–661. doi: 10.1042/bj2960657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pierik A. J., Wolbert R. B., Portier G. L., Verhagen M. F., Hagen W. R. Nigerythrin and rubrerythrin from Desulfovibrio vulgaris each contain two mononuclear iron centers and two dinuclear iron clusters. Eur J Biochem. 1993 Feb 15;212(1):237–245. doi: 10.1111/j.1432-1033.1993.tb17655.x. [DOI] [PubMed] [Google Scholar]
- Rose J. P., Wu C. K., Hsiao C. D., Breslow E., Wang B. C. Crystal structure of the neurophysin-oxytocin complex. Nat Struct Biol. 1996 Feb;3(2):163–169. doi: 10.1038/nsb0296-163. [DOI] [PubMed] [Google Scholar]
- Ryde U., Olsson M. H., Pierloot K., Roos B. O. The cupric geometry of blue copper proteins is not strained. J Mol Biol. 1996 Aug 30;261(4):586–596. doi: 10.1006/jmbi.1996.0484. [DOI] [PubMed] [Google Scholar]
- Saint-Martin P., Lespinat P. A., Fauque G., Berlier Y., Legall J., Moura I., Teixeira M., Xavier A. V., Moura J. J. Hydrogen production and deuterium-proton exchange reactions catalyzed by Desulfovibrio nickel(II)-substituted rubredoxins. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9378–9380. doi: 10.1073/pnas.85.24.9378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santos H., Fareleira P., Xavier A. V., Chen L., Liu M. Y., LeGall J. Aerobic metabolism of carbon reserves by the "obligate anaerobe" Desulfovibrio gigas. Biochem Biophys Res Commun. 1993 Sep 15;195(2):551–557. doi: 10.1006/bbrc.1993.2081. [DOI] [PubMed] [Google Scholar]
- Sheridan R. P., Allen L. C., Carter C. W., Jr Coupling between oxidation state and hydrogen bond conformation in high potential iron-sulfur protein. J Biol Chem. 1981 May 25;256(10):5052–5057. [PubMed] [Google Scholar]
- Sieker L. C., Stenkamp R. E., LeGall J. Rubredoxin in crystalline state. Methods Enzymol. 1994;243:203–216. doi: 10.1016/0076-6879(94)43016-0. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallee B. L., Williams R. J. Metalloenzymes: the entatic nature of their active sites. Proc Natl Acad Sci U S A. 1968 Feb;59(2):498–505. doi: 10.1073/pnas.59.2.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volbeda A., Charon M. H., Piras C., Hatchikian E. C., Frey M., Fontecilla-Camps J. C. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature. 1995 Feb 16;373(6515):580–587. doi: 10.1038/373580a0. [DOI] [PubMed] [Google Scholar]
- Weaver L. H., Grütter M. G., Matthews B. W. The refined structures of goose lysozyme and its complex with a bound trisaccharide show that the "goose-type" lysozymes lack a catalytic aspartate residue. J Mol Biol. 1995 Jan 6;245(1):54–68. doi: 10.1016/s0022-2836(95)80038-7. [DOI] [PubMed] [Google Scholar]
- Williams R. J. Energised (entatic) states of groups and of secondary structures in proteins and metalloproteins. Eur J Biochem. 1995 Dec 1;234(2):363–381. doi: 10.1111/j.1432-1033.1995.363_b.x. [DOI] [PubMed] [Google Scholar]
- Yu L., Kennedy M., Czaja C., Tavares P., Moura J. J., Moura I., Rusnak F. Conversion of desulforedoxin into a rubredoxin center. Biochem Biophys Res Commun. 1997 Feb 24;231(3):679–682. doi: 10.1006/bbrc.1997.6171. [DOI] [PubMed] [Google Scholar]
- deMaré F., Kurtz D. M., Jr, Nordlund P. The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combination of rubredoxin-like FeS4 and ferritin-like diiron domains. Nat Struct Biol. 1996 Jun;3(6):539–546. doi: 10.1038/nsb0696-539. [DOI] [PubMed] [Google Scholar]
