Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jul;8(7):1530–1535. doi: 10.1110/ps.8.7.1530

Effects of tryptophan to phenylalanine substitutions on the structure, stability, and enzyme activity of the IIAB(Man) subunit of the mannose transporter of Escherichia coli.

Z Markovic-Housley 1, B Stolz 1, R Lanz 1, B Erni 1
PMCID: PMC2144386  PMID: 10422843

Abstract

The hydrophilic subunit of the mannose transporter (IIAB(Man)) of Escherichia coli is a homodimer that contains four tryptophans per monomer, three in the N-terminal domain (Trp12, Trp33, and Trp69) and one in the C-terminal domain (Trp182). Single and double Trp-Phe mutants of IIABMan and of the IIA domain were produced. Fluorescence emission studies revealed that Trp33 and Trp12 are the major fluorescence emitters, Trp69 is strongly quenched in the native protein and Trp182 strongly blue shifted, indicative of a hydrophobic environment. Stabilities of the Trp mutants of dimeric IIA(Man) and IIAB(Man) were estimated from midpoints of the GdmHCl-induced unfolding transitions and from the amount of dimers that resisted dissociation by SDS (sodium dodecyl sulfate), respectively. W12F exhibited increased stability, but only 6% of the wild-type phosphotransferase activity, whereas W33F was marginally and W69F significantly destabilized, but fully active. Second site mutations W33F and W69F in the background of the W12F mutation reduced protein stability and suppressed the functional defect of W12F. These results suggest that flexibility is required for the adjustments of protein-protein contacts necessary for the phosphoryltransfer between the phosphorylcarrier protein HPr, IIA(Man), IIB(Man), and the incoming mannose bound to the transmembrane IIC(Man)-IID(Man) complex.

Full Text

The Full Text of this article is available as a PDF (356.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beechem J. M., Brand L. Time-resolved fluorescence of proteins. Annu Rev Biochem. 1985;54:43–71. doi: 10.1146/annurev.bi.54.070185.000355. [DOI] [PubMed] [Google Scholar]
  2. Erni B. Group translocation of glucose and other carbohydrates by the bacterial phosphotransferase system. Int Rev Cytol. 1992;137:127–148. doi: 10.1016/s0074-7696(08)62675-3. [DOI] [PubMed] [Google Scholar]
  3. Erni B., Zanolari B., Graff P., Kocher H. P. Mannose permease of Escherichia coli. Domain structure and function of the phosphorylating subunit. J Biol Chem. 1989 Nov 5;264(31):18733–18741. [PubMed] [Google Scholar]
  4. Erni B., Zanolari B., Kocher H. P. The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem. 1987 Apr 15;262(11):5238–5247. [PubMed] [Google Scholar]
  5. Erni B., Zanolari B. The mannose-permease of the bacterial phosphotransferase system. Gene cloning and purification of the enzyme IIMan/IIIMan complex of Escherichia coli. J Biol Chem. 1985 Dec 15;260(29):15495–15503. [PubMed] [Google Scholar]
  6. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  7. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  8. Lengeler J. W., Jahreis K., Wehmeier U. F. Enzymes II of the phospho enol pyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim Biophys Acta. 1994 Nov 1;1188(1-2):1–28. doi: 10.1016/0005-2728(94)90017-5. [DOI] [PubMed] [Google Scholar]
  9. Marković-Housley Z., Cooper A., Lustig A., Flükiger K., Stolz B., Erni B. Independent folding of the domains in the hydrophilic subunit IIABman of the mannose transporter of Escherichia coli. Biochemistry. 1994 Sep 13;33(36):10977–10984. doi: 10.1021/bi00202a017. [DOI] [PubMed] [Google Scholar]
  10. Meadow N. D., Fox D. K., Roseman S. The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem. 1990;59:497–542. doi: 10.1146/annurev.bi.59.070190.002433. [DOI] [PubMed] [Google Scholar]
  11. Nunn R. S., Marković-Housley Z., Génovésio-Taverne J. C., Flükiger K., Rizkallah P. J., Jansonius J. N., Schirmer T., Erni B. Structure of the IIA domain of the mannose transporter from Escherichia coli at 1.7 angstroms resolution. J Mol Biol. 1996 Jun 14;259(3):502–511. doi: 10.1006/jmbi.1996.0335. [DOI] [PubMed] [Google Scholar]
  12. Schauder S., Nunn R. S., Lanz R., Erni B., Schirmer T. Crystal structure of the IIB subunit of a fructose permease (IIBLev) from Bacillus subtilis. J Mol Biol. 1998 Feb 27;276(3):591–602. doi: 10.1006/jmbi.1997.1544. [DOI] [PubMed] [Google Scholar]
  13. Stanssens P., Opsomer C., McKeown Y. M., Kramer W., Zabeau M., Fritz H. J. Efficient oligonucleotide-directed construction of mutations in expression vectors by the gapped duplex DNA method using alternating selectable markers. Nucleic Acids Res. 1989 Jun 26;17(12):4441–4454. doi: 10.1093/nar/17.12.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stolz B., Huber M., Marković-Housley Z., Erni B. The mannose transporter of Escherichia coli. Structure and function of the IIABMan subunit. J Biol Chem. 1993 Dec 25;268(36):27094–27099. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES