Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jul;8(7):1432–1444. doi: 10.1110/ps.8.7.1432

Relating structure to thermodynamics: the crystal structures and binding affinity of eight OppA-peptide complexes.

T G Davies 1, R E Hubbard 1, J R Tame 1
PMCID: PMC2144387  PMID: 10422831

Abstract

The oligopeptide-binding protein OppA provides a useful model system for studying the physical chemistry underlying noncovalent interactions since it binds a variety of readily synthesized ligands. We have studied the binding of eight closely related tripeptides of the type Lysine-X-Lysine, where X is an abnormal amino acid, by isothermal titration calorimetry (ITC) and X-ray crystallography. The tripeptides fall into three series of ligands, which have been designed to examine the effects of small changes to the central side chain. Three ligands have a primary amine as the second side chain, two have a straight alkane chain, and three have ring systems. The results have revealed a definite preference for the binding of hydrophobic residues over the positively charged side chains, the latter binding only weakly due to unfavorable enthalpic effects. Within the series of positively charged groups, a point of lowest affinity has been identified and this is proposed to arise from unfavorable electrostatic interactions in the pocket, including the disruption of a key salt bridge. Marked entropy-enthalpy compensation is found across the series, and some of the difficulties in designing tightly binding ligands have been highlighted.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajay, Murcko M. A. Computational methods to predict binding free energy in ligand-receptor complexes. J Med Chem. 1995 Dec 22;38(26):4953–4967. doi: 10.1021/jm00026a001. [DOI] [PubMed] [Google Scholar]
  2. Babine Robert E., Bender Steven L. Molecular Recognition of Proteinminus signLigand Complexes: Applications to Drug Design. Chem Rev. 1997 Aug 5;97(5):1359–1472. doi: 10.1021/cr960370z. [DOI] [PubMed] [Google Scholar]
  3. Burley S. K., Petsko G. A. Weakly polar interactions in proteins. Adv Protein Chem. 1988;39:125–189. doi: 10.1016/s0065-3233(08)60376-9. [DOI] [PubMed] [Google Scholar]
  4. Böhm H. J. Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J Comput Aided Mol Des. 1998 Jul;12(4):309–323. doi: 10.1023/a:1007999920146. [DOI] [PubMed] [Google Scholar]
  5. Böhm H. J. The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des. 1994 Jun;8(3):243–256. doi: 10.1007/BF00126743. [DOI] [PubMed] [Google Scholar]
  6. Dougherty D. A. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science. 1996 Jan 12;271(5246):163–168. doi: 10.1126/science.271.5246.163. [DOI] [PubMed] [Google Scholar]
  7. Dunitz J. D. Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions. Chem Biol. 1995 Nov;2(11):709–712. doi: 10.1016/1074-5521(95)90097-7. [DOI] [PubMed] [Google Scholar]
  8. Eisenberg D., McLachlan A. D. Solvation energy in protein folding and binding. Nature. 1986 Jan 16;319(6050):199–203. doi: 10.1038/319199a0. [DOI] [PubMed] [Google Scholar]
  9. Guyer C. A., Morgan D. G., Staros J. V. Binding specificity of the periplasmic oligopeptide-binding protein from Escherichia coli. J Bacteriol. 1986 Nov;168(2):775–779. doi: 10.1128/jb.168.2.775-779.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  11. Janin J. Elusive affinities. Proteins. 1995 Jan;21(1):30–39. doi: 10.1002/prot.340210105. [DOI] [PubMed] [Google Scholar]
  12. Murshudov G. N., Vagin A. A., Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
  13. Nakamura H. Roles of electrostatic interaction in proteins. Q Rev Biophys. 1996 Feb;29(1):1–90. doi: 10.1017/s0033583500005746. [DOI] [PubMed] [Google Scholar]
  14. Page M. I. Binding energy and enzymic catalysis. Biochem Biophys Res Commun. 1976 Sep 20;72(2):456–461. doi: 10.1016/s0006-291x(76)80064-2. [DOI] [PubMed] [Google Scholar]
  15. Page M. I., Jencks W. P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1678–1683. doi: 10.1073/pnas.68.8.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tame J. R., Dodson E. J., Murshudov G., Higgins C. F., Wilkinson A. J. The crystal structures of the oligopeptide-binding protein OppA complexed with tripeptide and tetrapeptide ligands. Structure. 1995 Dec 15;3(12):1395–1406. doi: 10.1016/s0969-2126(01)00276-3. [DOI] [PubMed] [Google Scholar]
  17. Tame J. R., Murshudov G. N., Dodson E. J., Neil T. K., Dodson G. G., Higgins C. F., Wilkinson A. J. The structural basis of sequence-independent peptide binding by OppA protein. Science. 1994 Jun 10;264(5165):1578–1581. doi: 10.1126/science.8202710. [DOI] [PubMed] [Google Scholar]
  18. Tame J. R., Sleigh S. H., Wilkinson A. J., Ladbury J. E. The role of water in sequence-independent ligand binding by an oligopeptide transporter protein. Nat Struct Biol. 1996 Dec;3(12):998–1001. doi: 10.1038/nsb1296-998. [DOI] [PubMed] [Google Scholar]
  19. Verlinde C. L., Hol W. G. Structure-based drug design: progress, results and challenges. Structure. 1994 Jul 15;2(7):577–587. doi: 10.1016/s0969-2126(00)00060-5. [DOI] [PubMed] [Google Scholar]
  20. Weber P. C., Lee S. L., Lewandowski F. A., Schadt M. C., Chang C. W., Kettner C. A. Kinetic and crystallographic studies of thrombin with Ac-(D)Phe-Pro-boroArg-OH and its lysine, amidine, homolysine, and ornithine analogs. Biochemistry. 1995 Mar 21;34(11):3750–3757. doi: 10.1021/bi00011a033. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES