Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Jul;8(7):1445–1454. doi: 10.1110/ps.8.7.1445

Conformational changes in the NS3 protease from hepatitis C virus strain Bk monitored by limited proteolysis and mass spectrometry.

S Orrù 1, F Dal Piaz 1, A Casbarra 1, G Biasiol 1, R De Francesco 1, C Steinkühler 1, P Pucci 1
PMCID: PMC2144388  PMID: 10422832

Abstract

Conformational changes occurring within the NS3 protease domain from the hepatitis C virus Bk strain (NS3(1-180)) under different physico-chemical conditions either in the absence or in the presence of its cofactor Pep4A were investigated by limited proteolysis experiments. Because the surface accessibility of the protein is affected by conformational changes, when comparative experiments were carried out on NS3(1-180) either at different glycerol concentrations or in the presence of Pep4A, differential peptide maps were obtained from which protein regions involved in the structural changes could be inferred. The surface topology of isolated NS3(1-180) in solution was essentially consistent with the crystal structure of the protein with the N-terminal segment showing a high conformational flexibility. At higher glycerol concentration, the protease assumed a more compact structure showing a decrease in the accessibility of the N-terminal segment that either was forced to interact with the protein or originate intermolecular interactions with neighboring molecules. Binding of the cofactor Pep4A caused the displacement of the N-terminal arm from the protein moiety, leading this segment to again adopt an open and flexible conformation, thus suggesting that the N-terminus of the protease contributes only marginally to the stability of the complex. The observed conformational changes might be directly correlated with the activation mechanism of the protease by either the cosolvent or the cofactor peptide because they lead to tighter packing of the substrate binding site.

Full Text

The Full Text of this article is available as a PDF (735.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartenschlager R., Ahlborn-Laake L., Mous J., Jacobsen H. Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J Virol. 1993 Jul;67(7):3835–3844. doi: 10.1128/jvi.67.7.3835-3844.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartenschlager R., Lohmann V., Wilkinson T., Koch J. O. Complex formation between the NS3 serine-type proteinase of the hepatitis C virus and NS4A and its importance for polyprotein maturation. J Virol. 1995 Dec;69(12):7519–7528. doi: 10.1128/jvi.69.12.7519-7528.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bianchi E., Urbani A., Biasiol G., Brunetti M., Pessi A., De Francesco R., Steinkühler C. Complex formation between the hepatitis C virus serine protease and a synthetic NS4A cofactor peptide. Biochemistry. 1997 Jun 24;36(25):7890–7897. doi: 10.1021/bi9631475. [DOI] [PubMed] [Google Scholar]
  4. Butkiewicz N. J., Wendel M., Zhang R., Jubin R., Pichardo J., Smith E. B., Hart A. M., Ingram R., Durkin J., Mui P. W. Enhancement of hepatitis C virus NS3 proteinase activity by association with NS4A-specific synthetic peptides: identification of sequence and critical residues of NS4A for the cofactor activity. Virology. 1996 Nov 15;225(2):328–338. doi: 10.1006/viro.1996.0607. [DOI] [PubMed] [Google Scholar]
  5. Choo Q. L., Richman K. H., Han J. H., Berger K., Lee C., Dong C., Gallegos C., Coit D., Medina-Selby R., Barr P. J. Genetic organization and diversity of the hepatitis C virus. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2451–2455. doi: 10.1073/pnas.88.6.2451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cole J. L. Characterization of human cytomegalovirus protease dimerization by analytical centrifugation. Biochemistry. 1996 Dec 3;35(48):15601–15610. doi: 10.1021/bi961719f. [DOI] [PubMed] [Google Scholar]
  7. Darke P. L., Cole J. L., Waxman L., Hall D. L., Sardana M. K., Kuo L. C. Active human cytomegalovirus protease is a dimer. J Biol Chem. 1996 Mar 29;271(13):7445–7449. doi: 10.1074/jbc.271.13.7445. [DOI] [PubMed] [Google Scholar]
  8. Eckart M. R., Selby M., Masiarz F., Lee C., Berger K., Crawford K., Kuo C., Kuo G., Houghton M., Choo Q. L. The hepatitis C virus encodes a serine protease involved in processing of the putative nonstructural proteins from the viral polyprotein precursor. Biochem Biophys Res Commun. 1993 Apr 30;192(2):399–406. doi: 10.1006/bbrc.1993.1429. [DOI] [PubMed] [Google Scholar]
  9. Failla C., Tomei L., De Francesco R. An amino-terminal domain of the hepatitis C virus NS3 protease is essential for interaction with NS4A. J Virol. 1995 Mar;69(3):1769–1777. doi: 10.1128/jvi.69.3.1769-1777.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Failla C., Tomei L., De Francesco R. Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. J Virol. 1994 Jun;68(6):3753–3760. doi: 10.1128/jvi.68.6.3753-3760.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glocker M. O., Borchers C., Fiedler W., Suckau D., Przybylski M. Molecular characterization of surface topology in protein tertiary structures by amino-acylation and mass spectrometric peptide mapping. Bioconjug Chem. 1994 Nov-Dec;5(6):583–590. doi: 10.1021/bc00030a014. [DOI] [PubMed] [Google Scholar]
  12. Grakoui A., McCourt D. W., Wychowski C., Feinstone S. M., Rice C. M. Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. J Virol. 1993 May;67(5):2832–2843. doi: 10.1128/jvi.67.5.2832-2843.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hijikata M., Mizushima H., Akagi T., Mori S., Kakiuchi N., Kato N., Tanaka T., Kimura K., Shimotohno K. Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J Virol. 1993 Aug;67(8):4665–4675. doi: 10.1128/jvi.67.8.4665-4675.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Houghton M., Weiner A., Han J., Kuo G., Choo Q. L. Molecular biology of the hepatitis C viruses: implications for diagnosis, development and control of viral disease. Hepatology. 1991 Aug;14(2):381–388. [PubMed] [Google Scholar]
  15. Kato N., Hijikata M., Ootsuyama Y., Nakagawa M., Ohkoshi S., Sugimura T., Shimotohno K. Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9524–9528. doi: 10.1073/pnas.87.24.9524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim J. L., Morgenstern K. A., Lin C., Fox T., Dwyer M. D., Landro J. A., Chambers S. P., Markland W., Lepre C. A., O'Malley E. T. Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell. 1996 Oct 18;87(2):343–355. doi: 10.1016/s0092-8674(00)81351-3. [DOI] [PubMed] [Google Scholar]
  17. Koch J. O., Lohmann V., Herian U., Bartenschlager R. In vitro studies on the activation of the hepatitis C virus NS3 proteinase by the NS4A cofactor. Virology. 1996 Jul 1;221(1):54–66. doi: 10.1006/viro.1996.0352. [DOI] [PubMed] [Google Scholar]
  18. Komoda Y., Hijikata M., Tanji Y., Hirowatari Y., Mizushima H., Kimura K., Shimotohno K. Processing of hepatitis C viral polyprotein in Escherichia coli. Gene. 1994 Aug 5;145(2):221–226. doi: 10.1016/0378-1119(94)90009-4. [DOI] [PubMed] [Google Scholar]
  19. Lin C., Prágai B. M., Grakoui A., Xu J., Rice C. M. Hepatitis C virus NS3 serine proteinase: trans-cleavage requirements and processing kinetics. J Virol. 1994 Dec;68(12):8147–8157. doi: 10.1128/jvi.68.12.8147-8157.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lin C., Thomson J. A., Rice C. M. A central region in the hepatitis C virus NS4A protein allows formation of an active NS3-NS4A serine proteinase complex in vivo and in vitro. J Virol. 1995 Jul;69(7):4373–4380. doi: 10.1128/jvi.69.7.4373-4380.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Love R. A., Parge H. E., Wickersham J. A., Hostomsky Z., Habuka N., Moomaw E. W., Adachi T., Hostomska Z. The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell. 1996 Oct 18;87(2):331–342. doi: 10.1016/s0092-8674(00)81350-1. [DOI] [PubMed] [Google Scholar]
  22. Margosiak S. A., Vanderpool D. L., Sisson W., Pinko C., Kan C. C. Dimerization of the human cytomegalovirus protease: kinetic and biochemical characterization of the catalytic homodimer. Biochemistry. 1996 Apr 23;35(16):5300–5307. doi: 10.1021/bi952842u. [DOI] [PubMed] [Google Scholar]
  23. Mori A., Yamada K., Kimura J., Koide T., Yuasa S., Yamada E., Miyamura T. Enzymatic characterization of purified NS3 serine proteinase of hepatitis C virus expressed in Escherichia coli. FEBS Lett. 1996 Jan 2;378(1):37–42. doi: 10.1016/0014-5793(95)01423-3. [DOI] [PubMed] [Google Scholar]
  24. Pizzi E., Tramontano A., Tomei L., La Monica N., Failla C., Sardana M., Wood T., De Francesco R. Molecular model of the specificity pocket of the hepatitis C virus protease: implications for substrate recognition. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):888–892. doi: 10.1073/pnas.91.3.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Priev A., Almagor A., Yedgar S., Gavish B. Glycerol decreases the volume and compressibility of protein interior. Biochemistry. 1996 Feb 20;35(7):2061–2066. doi: 10.1021/bi951842r. [DOI] [PubMed] [Google Scholar]
  26. Satoh S., Tanji Y., Hijikata M., Kimura K., Shimotohno K. The N-terminal region of hepatitis C virus nonstructural protein 3 (NS3) is essential for stable complex formation with NS4A. J Virol. 1995 Jul;69(7):4255–4260. doi: 10.1128/jvi.69.7.4255-4260.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scaloni A., Miraglia N., Orrù S., Amodeo P., Motta A., Marino G., Pucci P. Topology of the calmodulin-melittin complex. J Mol Biol. 1998 Apr 10;277(4):945–958. doi: 10.1006/jmbi.1998.1629. [DOI] [PubMed] [Google Scholar]
  28. Shoji I., Suzuki T., Chieda S., Sato M., Harada T., Chiba T., Matsuura Y., Miyamura T. Proteolytic activity of NS3 serine proteinase of hepatitis C virus efficiently expressed in Escherichia coli. Hepatology. 1995 Dec;22(6):1648–1655. [PubMed] [Google Scholar]
  29. Steinkühler C., Biasiol G., Brunetti M., Urbani A., Koch U., Cortese R., Pessi A., De Francesco R. Product inhibition of the hepatitis C virus NS3 protease. Biochemistry. 1998 Jun 23;37(25):8899–8905. doi: 10.1021/bi980313v. [DOI] [PubMed] [Google Scholar]
  30. Steinkühler C., Tomei L., De Francesco R. In vitro activity of hepatitis C virus protease NS3 purified from recombinant Baculovirus-infected Sf9 cells. J Biol Chem. 1996 Mar 15;271(11):6367–6373. doi: 10.1074/jbc.271.11.6367. [DOI] [PubMed] [Google Scholar]
  31. Steinkühler C., Urbani A., Tomei L., Biasiol G., Sardana M., Bianchi E., Pessi A., De Francesco R. Activity of purified hepatitis C virus protease NS3 on peptide substrates. J Virol. 1996 Oct;70(10):6694–6700. doi: 10.1128/jvi.70.10.6694-6700.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Suckau D., Mak M., Przybylski M. Protein surface topology-probing by selective chemical modification and mass spectrometric peptide mapping. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5630–5634. doi: 10.1073/pnas.89.12.5630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Suzuki T., Sato M., Chieda S., Shoji I., Harada T., Yamakawa Y., Watabe S., Matsuura Y., Miyamura T. In vivo and in vitro trans-cleavage activity of hepatitis C virus serine proteinase expressed by recombinant baculoviruses. J Gen Virol. 1995 Dec;76(Pt 12):3021–3029. doi: 10.1099/0022-1317-76-12-3021. [DOI] [PubMed] [Google Scholar]
  34. Takamizawa A., Mori C., Fuke I., Manabe S., Murakami S., Fujita J., Onishi E., Andoh T., Yoshida I., Okayama H. Structure and organization of the hepatitis C virus genome isolated from human carriers. J Virol. 1991 Mar;65(3):1105–1113. doi: 10.1128/jvi.65.3.1105-1113.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tanji Y., Hijikata M., Satoh S., Kaneko T., Shimotohno K. Hepatitis C virus-encoded nonstructural protein NS4A has versatile functions in viral protein processing. J Virol. 1995 Mar;69(3):1575–1581. doi: 10.1128/jvi.69.3.1575-1581.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Timasheff S. N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct. 1993;22:67–97. doi: 10.1146/annurev.bb.22.060193.000435. [DOI] [PubMed] [Google Scholar]
  37. Tomei L., Failla C., Santolini E., De Francesco R., La Monica N. NS3 is a serine protease required for processing of hepatitis C virus polyprotein. J Virol. 1993 Jul;67(7):4017–4026. doi: 10.1128/jvi.67.7.4017-4026.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tomei L., Failla C., Vitale R. L., Bianchi E., De Francesco R. A central hydrophobic domain of the hepatitis C virus NS4A protein is necessary and sufficient for the activation of the NS3 protease. J Gen Virol. 1996 May;77(Pt 5):1065–1070. doi: 10.1099/0022-1317-77-5-1065. [DOI] [PubMed] [Google Scholar]
  39. Urbani A., Bianchi E., Narjes F., Tramontano A., De Francesco R., Steinkühler C., Pessi A. Substrate specificity of the hepatitis C virus serine protease NS3. J Biol Chem. 1997 Apr 4;272(14):9204–9209. doi: 10.1074/jbc.272.14.9204. [DOI] [PubMed] [Google Scholar]
  40. Yan Y., Li Y., Munshi S., Sardana V., Cole J. L., Sardana M., Steinkuehler C., Tomei L., De Francesco R., Kuo L. C. Complex of NS3 protease and NS4A peptide of BK strain hepatitis C virus: a 2.2 A resolution structure in a hexagonal crystal form. Protein Sci. 1998 Apr;7(4):837–847. doi: 10.1002/pro.5560070402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zappacosta F., Ingallinella P., Scaloni A., Pessi A., Bianchi E., Sollazzo M., Tramontano A., Marino G., Pucci P. Surface topology of Minibody by selective chemical modifications and mass spectrometry. Protein Sci. 1997 Sep;6(9):1901–1909. doi: 10.1002/pro.5560060911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zappacosta F., Pessi A., Bianchi E., Venturini S., Sollazzo M., Tramontano A., Marino G., Pucci P. Probing the tertiary structure of proteins by limited proteolysis and mass spectrometry: the case of Minibody. Protein Sci. 1996 May;5(5):802–813. doi: 10.1002/pro.5560050502. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES