Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Sep;8(9):1878–1887. doi: 10.1110/ps.8.9.1878

A comparative study of the unfolding of the endoglucanase Cel45 from Humicola insolens in denaturant and surfactant.

D E Otzen 1, L Christiansen 1, M Schülein 1
PMCID: PMC2144393  PMID: 10493589

Abstract

Cellulases are increasingly being used for industrial purposes, particularly in washing powders, yet little is known of the factors governing the stability of proteins in detergent solutions. We present a comparative analysis of the behavior of the cellulase Cel45 from Humicola insolens in the presence of the denaturant guanidinium chloride and the anionic detergent C12-LAS. Although Cel45 unfolds in GdmCl according to a simple two-state model under equilibrium conditions, it accumulates a transient intermediate during refolding. The four disulfide bonds do not contribute detectably to the stability of the native state. Cel45 is unfolded by very low concentrations of C12-LAS (1-4 mM). An analysis of 16 mutants of Cel45 shows a very weak correlation between unfolding rates in denaturant and detergent; mutants that have the same unfolding rate in GdmCl (within a factor of 1.5) vary 1,000-fold in their unfolding rates in C12-LAS. The data support a simple model for unfolding by detergent, in which the introduction of positive charges or removal of negative charges greatly increases detergent sensitivity, while interactions with the hydrophobic detergent tail contribute to a smaller extent. This implies that different detergent-mediated unfolding pathways exist, whose accessibilities depend on individual residues. Double-mutant cycles reveal that mutations in two proximal residues lead to repulsion and a destabilization greater than the sum of the individual mutations as measured by GdmCl denaturation, but they also reduce the affinity for LAS and therefore actually stabilize the protein relative to wild-type. Ligands that interact strongly with the denatured state may therefore alter the unfolding process.

Full Text

The Full Text of this article is available as a PDF (293.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arunachalam U., Kellis J. T., Jr Folding and stability of endoglucanase III, a single-domain cellulase from Trichoderma reesei. Biochemistry. 1996 Sep 3;35(35):11379–11385. doi: 10.1021/bi960511r. [DOI] [PubMed] [Google Scholar]
  2. Baldwin R. L. How Hofmeister ion interactions affect protein stability. Biophys J. 1996 Oct;71(4):2056–2063. doi: 10.1016/S0006-3495(96)79404-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bordbar AK, Saboury AA, Housaindokht MR, Moosavi-Movahedi AA. Statistical Effects of the Binding of Ionic Surfactant to Protein. J Colloid Interface Sci. 1997 Aug 15;192(2):415–419. doi: 10.1006/jcis.1997.4999. [DOI] [PubMed] [Google Scholar]
  4. Carter P. J., Winter G., Wilkinson A. J., Fersht A. R. The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus). Cell. 1984 Oct;38(3):835–840. doi: 10.1016/0092-8674(84)90278-2. [DOI] [PubMed] [Google Scholar]
  5. Casey J. R., Reithmeier R. A. Detergent interaction with band 3, a model polytopic membrane protein. Biochemistry. 1993 Feb 2;32(4):1172–1179. doi: 10.1021/bi00055a023. [DOI] [PubMed] [Google Scholar]
  6. Choe S. E., Matsudaira P. T., Osterhout J., Wagner G., Shakhnovich E. I. Folding kinetics of villin 14T, a protein domain with a central beta-sheet and two hydrophobic cores. Biochemistry. 1998 Oct 13;37(41):14508–14518. doi: 10.1021/bi980889k. [DOI] [PubMed] [Google Scholar]
  7. Clarke J., Fersht A. R. Engineered disulfide bonds as probes of the folding pathway of barnase: increasing the stability of proteins against the rate of denaturation. Biochemistry. 1993 Apr 27;32(16):4322–4329. doi: 10.1021/bi00067a022. [DOI] [PubMed] [Google Scholar]
  8. Clarke S. The size and detergent binding of membrane proteins. J Biol Chem. 1975 Jul 25;250(14):5459–5469. [PubMed] [Google Scholar]
  9. Davies G. J., Dodson G. G., Hubbard R. E., Tolley S. P., Dauter Z., Wilson K. S., Hjort C., Mikkelsen J. M., Rasmussen G., Schülein M. Structure and function of endoglucanase V. Nature. 1993 Sep 23;365(6444):362–364. doi: 10.1038/365362a0. [DOI] [PubMed] [Google Scholar]
  10. Decker R. V., Foster J. F. The interaction of bovine plasma albumin with detergent anions. Stoichiometry and mechanism of binding of alkylbenzenesulfonates. Biochemistry. 1966 Apr;5(4):1242–1254. doi: 10.1021/bi00868a018. [DOI] [PubMed] [Google Scholar]
  11. Fersht A. R., Itzhaki L. S., elMasry N. F., Matthews J. M., Otzen D. E. Single versus parallel pathways of protein folding and fractional formation of structure in the transition state. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10426–10429. doi: 10.1073/pnas.91.22.10426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fersht A. R., Matouschek A., Serrano L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol. 1992 Apr 5;224(3):771–782. doi: 10.1016/0022-2836(92)90561-w. [DOI] [PubMed] [Google Scholar]
  13. Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ibel K., May R. P., Kirschner K., Szadkowski H., Mascher E., Lundahl P. Protein-decorated micelle structure of sodium-dodecyl-sulfate--protein complexes as determined by neutron scattering. Eur J Biochem. 1990 Jun 20;190(2):311–318. doi: 10.1111/j.1432-1033.1990.tb15578.x. [DOI] [PubMed] [Google Scholar]
  15. Ikai A. Stepwise degradation of serum low denisty lipoprotein by sodium dodecyl sulfate. J Biochem. 1976 Mar;79(3):679–688. doi: 10.1093/oxfordjournals.jbchem.a131113. [DOI] [PubMed] [Google Scholar]
  16. Jirgensons B. Effects of n-propyl alcohol and detergents on the optical rotatory dispersion of alpha-chymotrypsinogen, beta-casein, histone fraction F1, and soybean trypsin inhibitor. J Biol Chem. 1967 Mar 10;242(5):912–918. [PubMed] [Google Scholar]
  17. Kelly J. M., Hynes M. J. Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J. 1985 Feb;4(2):475–479. doi: 10.1002/j.1460-2075.1985.tb03653.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kraulis J., Clore G. M., Nilges M., Jones T. A., Pettersson G., Knowles J., Gronenborn A. M. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry. 1989 Sep 5;28(18):7241–7257. doi: 10.1021/bi00444a016. [DOI] [PubMed] [Google Scholar]
  19. Makhatadze G. I., Privalov P. L. Protein interactions with urea and guanidinium chloride. A calorimetric study. J Mol Biol. 1992 Jul 20;226(2):491–505. doi: 10.1016/0022-2836(92)90963-k. [DOI] [PubMed] [Google Scholar]
  20. Makino S., Reynolds J. A., Tanford C. The binding of deoxycholate and Triton X-100 to proteins. J Biol Chem. 1973 Jul 25;248(14):4926–4932. [PubMed] [Google Scholar]
  21. Mascher E., Lundahl P. Sodium dodecyl sulphate-protein complexes. Changes in size or shape below the critical micelle concentration, as monitored by high-performance agarose gel chromatography. J Chromatogr. 1989 Aug 4;476:147–158. doi: 10.1016/s0021-9673(01)93864-6. [DOI] [PubMed] [Google Scholar]
  22. Matouschek A., Fersht A. R. Application of physical organic chemistry to engineered mutants of proteins: Hammond postulate behavior in the transition state of protein folding. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7814–7818. doi: 10.1073/pnas.90.16.7814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Matouschek A., Kellis J. T., Jr, Serrano L., Fersht A. R. Mapping the transition state and pathway of protein folding by protein engineering. Nature. 1989 Jul 13;340(6229):122–126. doi: 10.1038/340122a0. [DOI] [PubMed] [Google Scholar]
  24. Matouschek A., Otzen D. E., Itzhaki L. S., Jackson S. E., Fersht A. R. Movement of the position of the transition state in protein folding. Biochemistry. 1995 Oct 17;34(41):13656–13662. doi: 10.1021/bi00041a047. [DOI] [PubMed] [Google Scholar]
  25. Mattice W. L., Riser J. M., Clark D. S. Conformational properties of the complexes formed by proteins and sodium dodecyl sulfate. Biochemistry. 1976 Sep 21;15(19):4264–4272. doi: 10.1021/bi00664a020. [DOI] [PubMed] [Google Scholar]
  26. Moriyama R., Makino S. Effect of detergent on protein structure. Action of detergents on secondary and oligomeric structures of band 3 from bovine erythrocyte membranes. Biochim Biophys Acta. 1985 Nov 29;832(2):135–141. doi: 10.1016/0167-4838(85)90324-3. [DOI] [PubMed] [Google Scholar]
  27. Nozaki Y., Tanford C. The solubility of amino acids, diglycine, and triglycine in aqueous guanidine hydrochloride solutions. J Biol Chem. 1970 Apr 10;245(7):1648–1652. [PubMed] [Google Scholar]
  28. Otzen D. E., Fersht A. R. Folding of circular and permuted chymotrypsin inhibitor 2: retention of the folding nucleus. Biochemistry. 1998 Jun 2;37(22):8139–8146. doi: 10.1021/bi980250g. [DOI] [PubMed] [Google Scholar]
  29. Pace C. N., Grimsley G. R., Thomson J. A., Barnett B. J. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J Biol Chem. 1988 Aug 25;263(24):11820–11825. [PubMed] [Google Scholar]
  30. Parker M. J., Spencer J., Clarke A. R. An integrated kinetic analysis of intermediates and transition states in protein folding reactions. J Mol Biol. 1995 Nov 10;253(5):771–786. doi: 10.1006/jmbi.1995.0590. [DOI] [PubMed] [Google Scholar]
  31. Ray A., Reynolds J. A., Polet H., Steinhardt J. Binding of large organic anions and neutral molecules by native bovine serum albumin. Biochemistry. 1966 Aug;5(8):2606–2616. doi: 10.1021/bi00872a019. [DOI] [PubMed] [Google Scholar]
  32. Renthal R., Haas P. Effect of transmembrane helix packing on tryptophan and tyrosine environments in detergent-solubilized bacterio-opsin. J Protein Chem. 1996 Apr;15(3):281–289. doi: 10.1007/BF01887117. [DOI] [PubMed] [Google Scholar]
  33. Reynolds J. A., Tanford C. The gross conformation of protein-sodium dodecyl sulfate complexes. J Biol Chem. 1970 Oct 10;245(19):5161–5165. [PubMed] [Google Scholar]
  34. Serrano L., Matouschek A., Fersht A. R. The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J Mol Biol. 1992 Apr 5;224(3):805–818. doi: 10.1016/0022-2836(92)90563-y. [DOI] [PubMed] [Google Scholar]
  35. Tanford C. Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv Protein Chem. 1970;24:1–95. [PubMed] [Google Scholar]
  36. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  37. Timasheff S. N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct. 1993;22:67–97. doi: 10.1146/annurev.bb.22.060193.000435. [DOI] [PubMed] [Google Scholar]
  38. Tomme P., Warren R. A., Gilkes N. R. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol. 1995;37:1–81. doi: 10.1016/s0065-2911(08)60143-5. [DOI] [PubMed] [Google Scholar]
  39. Yonath A., Podjarny A., Honig B., Sielecki A., Traub W. Crystallographic studies of protein denaturation and renaturation. 2. Sodium dodecyl sulfate induced structural changes in triclinic lysozyme. Biochemistry. 1977 Apr 5;16(7):1418–1424. doi: 10.1021/bi00626a028. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES