Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Sep;8(9):1816–1824. doi: 10.1110/ps.8.9.1816

Functional analyses of AmpC beta-lactamase through differential stability.

B M Beadle 1, S L McGovern 1, A Patera 1, B K Shoichet 1
PMCID: PMC2144403  PMID: 10493583

Abstract

Despite decades of intense study, the complementarity of beta-lactams for beta-lactamases and penicillin binding proteins is poorly understood. For most of these enzymes, beta-lactam binding involves rapid formation of a covalent intermediate. This makes measuring the equilibrium between bound and free beta-lactam difficult, effectively precluding measurement of the interaction energy between the ligand and the enzyme. Here, we explore the energetic complementarity of beta-lactams for the beta-lactamase AmpC through reversible denaturation of adducts of the enzyme with beta-lactams. AmpC from Escherichia coli was reversibly denatured by temperature in a two-state manner with a temperature of melting (Tm) of 54.6 degrees C and a van't Hoff enthalpy of unfolding (deltaH(VH)) of 182 kcal/mol. Solvent denaturation gave a Gibbs free energy of unfolding in the absence of denaturant (deltaG(u)H2O) of 14.0 kcal/mol. Ligand binding perturbed the stability of the enzyme. The penicillin cloxacillin stabilized AmpC by 3.2 kcal/mol (deltaTm = +5.8 degrees C); the monobactam aztreonam stabilized the enzyme by 2.7 kcal/mol (deltaTm = +4.9 degrees C). Both acylating inhibitors complement the active site. Surprisingly, the oxacephem moxalactam and the carbapenem imipenem both destabilized AmpC, by 1.8 kcal/mol (deltaTm = -3.2 degrees C) and 0.7 kcal/mol (deltaTm = -1.2 degrees C), respectively. These beta-lactams, which share nonhydrogen substituents in the 6(7)alpha position of the beta-lactam ring, make unfavorable noncovalent interactions with the enzyme. Complexes of AmpC with transition state analog inhibitors were also reversibly denatured; both benzo(b)thiophene-2-boronic acid (BZBTH2B) and p-nitrophenyl phenylphosphonate (PNPP) stabilized AmpC. Finally, a catalytically inactive mutant of AmpC, Y150F, was reversibly denatured. It was 0.7 kcal/mol (deltaTm = -1.3 degrees C) less stable than wild-type (WT) by thermal denaturation. Both the cloxacillin and the moxalactam adducts with Y150F were significantly destabilized relative to their WT counterparts, suggesting that this residue plays a role in recognizing the acylated intermediate of the beta-lactamase reaction. Reversible denaturation allows for energetic analyses of the complementarity of AmpC for beta-lactams, through ligand binding, and for itself, through residue substitution. Reversible denaturation may be a useful way to study ligand complementarity to other beta-lactam binding proteins as well.

Full Text

The Full Text of this article is available as a PDF (690.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  2. Christensen H., Martin M. T., Waley S. G. Beta-lactamases as fully efficient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism. Biochem J. 1990 Mar 15;266(3):853–861. [PMC free article] [PubMed] [Google Scholar]
  3. Dill K. A., Alonso D. O., Hutchinson K. Thermal stabilities of globular proteins. Biochemistry. 1989 Jun 27;28(13):5439–5449. doi: 10.1021/bi00439a019. [DOI] [PubMed] [Google Scholar]
  4. Dubus A., Normark S., Kania M., Page M. G. Role of asparagine 152 in catalysis of beta-lactam hydrolysis by Escherichia coli AmpC beta-lactamase studied by site-directed mutagenesis. Biochemistry. 1995 Jun 13;34(23):7757–7764. doi: 10.1021/bi00023a023. [DOI] [PubMed] [Google Scholar]
  5. Dubus A., Normark S., Kania M., Page M. G. The role of tyrosine 150 in catalysis of beta-lactam hydrolysis by AmpC beta-lactamase from Escherichia coli investigated by site-directed mutagenesis. Biochemistry. 1994 Jul 19;33(28):8577–8586. doi: 10.1021/bi00194a024. [DOI] [PubMed] [Google Scholar]
  6. Fisher J., Belasco J. G., Khosla S., Knowles J. R. beta-Lactamase proceeds via an acyl-enzyme intermediate. Interaction of the Escherichia coli RTEM enzyme with cefoxitin. Biochemistry. 1980 Jun 24;19(13):2895–2901. doi: 10.1021/bi00554a012. [DOI] [PubMed] [Google Scholar]
  7. Hall A., Knowles J. R. Directed selective pressure on a beta-lactamase to analyse molecular changes involved in development of enzyme function. Nature. 1976 Dec 23;264(5588):803–804. doi: 10.1038/264803a0. [DOI] [PubMed] [Google Scholar]
  8. Ishiguro M., Tanaka R., Namikawa K., Nasu T., Inoue H., Nakatsuka T., Oyama Y., Imajo S. 5,6-Cis-penems: broad-spectrum anti-methicillin-resistant Staphylococcus aureus beta-lactam antibiotics. J Med Chem. 1997 Jul 4;40(14):2126–2132. doi: 10.1021/jm9703348. [DOI] [PubMed] [Google Scholar]
  9. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  10. Li N., Rahil J., Wright M. E., Pratt R. F. Structure-activity studies of the inhibition of serine beta-lactamases by phosphonate monoesters. Bioorg Med Chem. 1997 Sep;5(9):1783–1788. doi: 10.1016/s0968-0896(97)00103-x. [DOI] [PubMed] [Google Scholar]
  11. Lobkovsky E., Billings E. M., Moews P. C., Rahil J., Pratt R. F., Knox J. R. Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase transition-state analog. Biochemistry. 1994 Jun 7;33(22):6762–6772. doi: 10.1021/bi00188a004. [DOI] [PubMed] [Google Scholar]
  12. Lobkovsky E., Moews P. C., Liu H., Zhao H., Frere J. M., Knox J. R. Evolution of an enzyme activity: crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11257–11261. doi: 10.1073/pnas.90.23.11257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morton A., Matthews B. W. Specificity of ligand binding in a buried nonpolar cavity of T4 lysozyme: linkage of dynamics and structural plasticity. Biochemistry. 1995 Jul 11;34(27):8576–8588. doi: 10.1021/bi00027a007. [DOI] [PubMed] [Google Scholar]
  14. Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Oefner C., D'Arcy A., Daly J. J., Gubernator K., Charnas R. L., Heinze I., Hubschwerlen C., Winkler F. K. Refined crystal structure of beta-lactamase from Citrobacter freundii indicates a mechanism for beta-lactam hydrolysis. Nature. 1990 Jan 18;343(6255):284–288. doi: 10.1038/343284a0. [DOI] [PubMed] [Google Scholar]
  16. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  17. Pace C. N. Evaluating contribution of hydrogen bonding and hydrophobic bonding to protein folding. Methods Enzymol. 1995;259:538–554. doi: 10.1016/0076-6879(95)59060-9. [DOI] [PubMed] [Google Scholar]
  18. Rahil J., Pratt R. F. Characterization of covalently bound enzyme inhibitors as transition-state analogs by protein stability measurements: phosphonate monoester inhibitors of a beta-lactamase. Biochemistry. 1994 Jan 11;33(1):116–125. doi: 10.1021/bi00167a015. [DOI] [PubMed] [Google Scholar]
  19. Strominger J. L., Tipper D. J. Bacterial cell wall synthesis and structure in relation to the mechanism of action of penicillins and other antibacterial agents. Am J Med. 1965 Nov;39(5):708–721. doi: 10.1016/0002-9343(65)90093-8. [DOI] [PubMed] [Google Scholar]
  20. Strynadka N. C., Adachi H., Jensen S. E., Johns K., Sielecki A., Betzel C., Sutoh K., James M. N. Molecular structure of the acyl-enzyme intermediate in beta-lactam hydrolysis at 1.7 A resolution. Nature. 1992 Oct 22;359(6397):700–705. doi: 10.1038/359700a0. [DOI] [PubMed] [Google Scholar]
  21. Usher K. C., Blaszczak L. C., Weston G. S., Shoichet B. K., Remington S. J. Three-dimensional structure of AmpC beta-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design. Biochemistry. 1998 Nov 17;37(46):16082–16092. doi: 10.1021/bi981210f. [DOI] [PubMed] [Google Scholar]
  22. Weston G. S., Blázquez J., Baquero F., Shoichet B. K. Structure-based enhancement of boronic acid-based inhibitors of AmpC beta-lactamase. J Med Chem. 1998 Nov 5;41(23):4577–4586. doi: 10.1021/jm980343w. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES