Abstract
Despite decades of intense study, the complementarity of beta-lactams for beta-lactamases and penicillin binding proteins is poorly understood. For most of these enzymes, beta-lactam binding involves rapid formation of a covalent intermediate. This makes measuring the equilibrium between bound and free beta-lactam difficult, effectively precluding measurement of the interaction energy between the ligand and the enzyme. Here, we explore the energetic complementarity of beta-lactams for the beta-lactamase AmpC through reversible denaturation of adducts of the enzyme with beta-lactams. AmpC from Escherichia coli was reversibly denatured by temperature in a two-state manner with a temperature of melting (Tm) of 54.6 degrees C and a van't Hoff enthalpy of unfolding (deltaH(VH)) of 182 kcal/mol. Solvent denaturation gave a Gibbs free energy of unfolding in the absence of denaturant (deltaG(u)H2O) of 14.0 kcal/mol. Ligand binding perturbed the stability of the enzyme. The penicillin cloxacillin stabilized AmpC by 3.2 kcal/mol (deltaTm = +5.8 degrees C); the monobactam aztreonam stabilized the enzyme by 2.7 kcal/mol (deltaTm = +4.9 degrees C). Both acylating inhibitors complement the active site. Surprisingly, the oxacephem moxalactam and the carbapenem imipenem both destabilized AmpC, by 1.8 kcal/mol (deltaTm = -3.2 degrees C) and 0.7 kcal/mol (deltaTm = -1.2 degrees C), respectively. These beta-lactams, which share nonhydrogen substituents in the 6(7)alpha position of the beta-lactam ring, make unfavorable noncovalent interactions with the enzyme. Complexes of AmpC with transition state analog inhibitors were also reversibly denatured; both benzo(b)thiophene-2-boronic acid (BZBTH2B) and p-nitrophenyl phenylphosphonate (PNPP) stabilized AmpC. Finally, a catalytically inactive mutant of AmpC, Y150F, was reversibly denatured. It was 0.7 kcal/mol (deltaTm = -1.3 degrees C) less stable than wild-type (WT) by thermal denaturation. Both the cloxacillin and the moxalactam adducts with Y150F were significantly destabilized relative to their WT counterparts, suggesting that this residue plays a role in recognizing the acylated intermediate of the beta-lactamase reaction. Reversible denaturation allows for energetic analyses of the complementarity of AmpC for beta-lactams, through ligand binding, and for itself, through residue substitution. Reversible denaturation may be a useful way to study ligand complementarity to other beta-lactam binding proteins as well.
Full Text
The Full Text of this article is available as a PDF (690.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
- Christensen H., Martin M. T., Waley S. G. Beta-lactamases as fully efficient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism. Biochem J. 1990 Mar 15;266(3):853–861. [PMC free article] [PubMed] [Google Scholar]
- Dill K. A., Alonso D. O., Hutchinson K. Thermal stabilities of globular proteins. Biochemistry. 1989 Jun 27;28(13):5439–5449. doi: 10.1021/bi00439a019. [DOI] [PubMed] [Google Scholar]
- Dubus A., Normark S., Kania M., Page M. G. Role of asparagine 152 in catalysis of beta-lactam hydrolysis by Escherichia coli AmpC beta-lactamase studied by site-directed mutagenesis. Biochemistry. 1995 Jun 13;34(23):7757–7764. doi: 10.1021/bi00023a023. [DOI] [PubMed] [Google Scholar]
- Dubus A., Normark S., Kania M., Page M. G. The role of tyrosine 150 in catalysis of beta-lactam hydrolysis by AmpC beta-lactamase from Escherichia coli investigated by site-directed mutagenesis. Biochemistry. 1994 Jul 19;33(28):8577–8586. doi: 10.1021/bi00194a024. [DOI] [PubMed] [Google Scholar]
- Fisher J., Belasco J. G., Khosla S., Knowles J. R. beta-Lactamase proceeds via an acyl-enzyme intermediate. Interaction of the Escherichia coli RTEM enzyme with cefoxitin. Biochemistry. 1980 Jun 24;19(13):2895–2901. doi: 10.1021/bi00554a012. [DOI] [PubMed] [Google Scholar]
- Hall A., Knowles J. R. Directed selective pressure on a beta-lactamase to analyse molecular changes involved in development of enzyme function. Nature. 1976 Dec 23;264(5588):803–804. doi: 10.1038/264803a0. [DOI] [PubMed] [Google Scholar]
- Ishiguro M., Tanaka R., Namikawa K., Nasu T., Inoue H., Nakatsuka T., Oyama Y., Imajo S. 5,6-Cis-penems: broad-spectrum anti-methicillin-resistant Staphylococcus aureus beta-lactam antibiotics. J Med Chem. 1997 Jul 4;40(14):2126–2132. doi: 10.1021/jm9703348. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Li N., Rahil J., Wright M. E., Pratt R. F. Structure-activity studies of the inhibition of serine beta-lactamases by phosphonate monoesters. Bioorg Med Chem. 1997 Sep;5(9):1783–1788. doi: 10.1016/s0968-0896(97)00103-x. [DOI] [PubMed] [Google Scholar]
- Lobkovsky E., Billings E. M., Moews P. C., Rahil J., Pratt R. F., Knox J. R. Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase transition-state analog. Biochemistry. 1994 Jun 7;33(22):6762–6772. doi: 10.1021/bi00188a004. [DOI] [PubMed] [Google Scholar]
- Lobkovsky E., Moews P. C., Liu H., Zhao H., Frere J. M., Knox J. R. Evolution of an enzyme activity: crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11257–11261. doi: 10.1073/pnas.90.23.11257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morton A., Matthews B. W. Specificity of ligand binding in a buried nonpolar cavity of T4 lysozyme: linkage of dynamics and structural plasticity. Biochemistry. 1995 Jul 11;34(27):8576–8588. doi: 10.1021/bi00027a007. [DOI] [PubMed] [Google Scholar]
- Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oefner C., D'Arcy A., Daly J. J., Gubernator K., Charnas R. L., Heinze I., Hubschwerlen C., Winkler F. K. Refined crystal structure of beta-lactamase from Citrobacter freundii indicates a mechanism for beta-lactam hydrolysis. Nature. 1990 Jan 18;343(6255):284–288. doi: 10.1038/343284a0. [DOI] [PubMed] [Google Scholar]
- Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
- Pace C. N. Evaluating contribution of hydrogen bonding and hydrophobic bonding to protein folding. Methods Enzymol. 1995;259:538–554. doi: 10.1016/0076-6879(95)59060-9. [DOI] [PubMed] [Google Scholar]
- Rahil J., Pratt R. F. Characterization of covalently bound enzyme inhibitors as transition-state analogs by protein stability measurements: phosphonate monoester inhibitors of a beta-lactamase. Biochemistry. 1994 Jan 11;33(1):116–125. doi: 10.1021/bi00167a015. [DOI] [PubMed] [Google Scholar]
- Strominger J. L., Tipper D. J. Bacterial cell wall synthesis and structure in relation to the mechanism of action of penicillins and other antibacterial agents. Am J Med. 1965 Nov;39(5):708–721. doi: 10.1016/0002-9343(65)90093-8. [DOI] [PubMed] [Google Scholar]
- Strynadka N. C., Adachi H., Jensen S. E., Johns K., Sielecki A., Betzel C., Sutoh K., James M. N. Molecular structure of the acyl-enzyme intermediate in beta-lactam hydrolysis at 1.7 A resolution. Nature. 1992 Oct 22;359(6397):700–705. doi: 10.1038/359700a0. [DOI] [PubMed] [Google Scholar]
- Usher K. C., Blaszczak L. C., Weston G. S., Shoichet B. K., Remington S. J. Three-dimensional structure of AmpC beta-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design. Biochemistry. 1998 Nov 17;37(46):16082–16092. doi: 10.1021/bi981210f. [DOI] [PubMed] [Google Scholar]
- Weston G. S., Blázquez J., Baquero F., Shoichet B. K. Structure-based enhancement of boronic acid-based inhibitors of AmpC beta-lactamase. J Med Chem. 1998 Nov 5;41(23):4577–4586. doi: 10.1021/jm980343w. [DOI] [PubMed] [Google Scholar]