Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Sep;8(9):1850–1859. doi: 10.1110/ps.8.9.1850

Role of the prosequence of guanylin.

A Schulz 1, U C Marx 1, Y Hidaka 1, Y Shimonishi 1, P Rösch 1, W G Forssmann 1, K Adermann 1
PMCID: PMC2144405  PMID: 10493586

Abstract

Guanylin is a guanylyl cyclase (GC)-activating peptide that is mainly secreted as the corresponding prohormone of 94 amino acid residues. In this study, we show that the originally isolated 15-residue guanylin, representing the COOH-terminal part of the prohormone, is released from the prohormone by cleavage of an Asp-Pro amide bond under conditions applied during the isolation procedures. Thus, the 15-residue guanylin is probably a non-native, chemically induced GC-activating peptide. This guanylin molecule contains two disulfide bonds that are absolutely necessary for receptor activation. We demonstrate that the folding of the reduced 15-residue guanylin results almost completely in the formation of the two inactive disulfide isomers. In contrast, the reduced form of proguanylin containing the entire prosequence folds to a product with the native cysteine connectivity. Because proguanylin lacking the 31 NH2-terminal residues of the prosequence folds only to a minor extent to guanylin with the native disulfide bonds, it is evident that this NH2-terminal region contributes significantly to the correct disulfide-coupled folding. Structural studies using CD and NMR spectroscopy show that native proguanylin contains a considerable amount of alpha-helical and, to a lesser extent, beta-sheet structural elements. In addition, a close proximity of the NH2- and the COOH-terminal regions was found by NOESY. It appears that this interaction is important for the constitution of the correct conformation and provides an explanation of the minor guanylyl cyclase activity of proguanylin by shielding the bioactive COOH-terminal domain from the receptor.

Full Text

The Full Text of this article is available as a PDF (582.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  2. Badock V., Raida M., Adermann K., Forssmann W. G., Schrader M. Distinction between the three disulfide isomers of guanylin 99-115 by low-energy collision-induced dissociation. Rapid Commun Mass Spectrom. 1998;12(23):1952–1956. doi: 10.1002/(SICI)1097-0231(19981215)12:23<1952::AID-RCM420>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  3. Chao A. C., de Sauvage F. J., Dong Y. J., Wagner J. A., Goeddel D. V., Gardner P. Activation of intestinal CFTR Cl- channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J. 1994 Mar 1;13(5):1065–1072. doi: 10.1002/j.1460-2075.1994.tb06355.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Currie M. G., Fok K. F., Kato J., Moore R. J., Hamra F. K., Duffin K. L., Smith C. E. Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):947–951. doi: 10.1073/pnas.89.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deléage G., Roux B. An algorithm for protein secondary structure prediction based on class prediction. Protein Eng. 1987 Aug-Sep;1(4):289–294. doi: 10.1093/protein/1.4.289. [DOI] [PubMed] [Google Scholar]
  6. Fan X., Hamra F. K., London R. M., Eber S. L., Krause W. J., Freeman R. H., Smith C. E., Currie M. G., Forte L. R. Structure and activity of uroguanylin and guanylin from the intestine and urine of rats. Am J Physiol. 1997 Nov;273(5 Pt 1):E957–E964. doi: 10.1152/ajpendo.1997.273.5.E957. [DOI] [PubMed] [Google Scholar]
  7. Fischer D., Eisenberg D. Protein fold recognition using sequence-derived predictions. Protein Sci. 1996 May;5(5):947–955. doi: 10.1002/pro.5560050516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Forte L. R., Currie M. G. Guanylin: a peptide regulator of epithelial transport. FASEB J. 1995 May;9(8):643–650. doi: 10.1096/fasebj.9.8.7768356. [DOI] [PubMed] [Google Scholar]
  9. Forte L. R., Eber S. L., Turner J. T., Freeman R. H., Fok K. F., Currie M. G. Guanylin stimulation of Cl- secretion in human intestinal T84 cells via cyclic guanosine monophosphate. J Clin Invest. 1993 Jun;91(6):2423–2428. doi: 10.1172/JCI116476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garcia K. C., de Sauvage F. J., Struble M., Henzel W., Reilly D., Goeddel D. V. Processing and characterization of human proguanylin expressed in Escherichia coli. J Biol Chem. 1993 Oct 25;268(30):22397–22401. [PubMed] [Google Scholar]
  11. Geourjon C., Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci. 1995 Dec;11(6):681–684. doi: 10.1093/bioinformatics/11.6.681. [DOI] [PubMed] [Google Scholar]
  12. Giannella R. A. Escherichia coli heat-stable enterotoxins, guanylins, and their receptors: what are they and what do they do? J Lab Clin Med. 1995 Feb;125(2):173–181. [PubMed] [Google Scholar]
  13. Gibrat J. F., Garnier J., Robson B. Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J Mol Biol. 1987 Dec 5;198(3):425–443. doi: 10.1016/0022-2836(87)90292-0. [DOI] [PubMed] [Google Scholar]
  14. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  15. Hamra F. K., Eber S. L., Chin D. T., Currie M. G., Forte L. R. Regulation of intestinal uroguanylin/guanylin receptor-mediated responses by mucosal acidity. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2705–2710. doi: 10.1073/pnas.94.6.2705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hamra F. K., Fan X., Krause W. J., Freeman R. H., Chin D. T., Smith C. E., Currie M. G., Forte L. R. Prouroguanylin and proguanylin: purification from colon, structure, and modulation of bioactivity by proteases. Endocrinology. 1996 Jan;137(1):257–265. doi: 10.1210/endo.137.1.8536621. [DOI] [PubMed] [Google Scholar]
  17. Hidaka Y., Ohno M., Hemmasi B., Hill O., Forssmann W. G., Shimonishi Y. In vitro disulfide-coupled folding of guanylyl cyclase-activating peptide and its precursor protein. Biochemistry. 1998 Jun 9;37(23):8498–8507. doi: 10.1021/bi9731246. [DOI] [PubMed] [Google Scholar]
  18. Jones D. T., Taylor W. R., Thornton J. M. A new approach to protein fold recognition. Nature. 1992 Jul 2;358(6381):86–89. doi: 10.1038/358086a0. [DOI] [PubMed] [Google Scholar]
  19. Kaever V., Resch K. Are cyclic nucleotides involved in the initiation of mitogenic activation of human lymphocytes? Biochim Biophys Acta. 1985 Aug 30;846(2):216–225. doi: 10.1016/0167-4889(85)90068-0. [DOI] [PubMed] [Google Scholar]
  20. Klodt J., Kuhn M., Marx U. C., Martin S., Rösch P., Forssmann W. G., Adermann K. Synthesis, biological activity and isomerism of guanylate cyclase C-activating peptides guanylin and uroguanylin. J Pept Res. 1997 Sep;50(3):222–230. doi: 10.1111/j.1399-3011.1997.tb01188.x. [DOI] [PubMed] [Google Scholar]
  21. Kowit J. D., Maloney J. Protein cleavage by boiling in sodium dodecyl sulfate prior to electrophoresis. Anal Biochem. 1982 Jun;123(1):86–93. doi: 10.1016/0003-2697(82)90627-3. [DOI] [PubMed] [Google Scholar]
  22. Kuhn M., Raida M., Adermann K., Schulz-Knappe P., Gerzer R., Heim J. M., Forssmann W. G. The circulating bioactive form of human guanylin is a high molecular weight peptide (10.3 kDa). FEBS Lett. 1993 Mar 1;318(2):205–209. doi: 10.1016/0014-5793(93)80022-m. [DOI] [PubMed] [Google Scholar]
  23. Kumagaye S., Kuroda H., Nakajima K., Watanabe T. X., Kimura T., Masaki T., Sakakibara S. Synthesis and disulfide structure determination of porcine endothelin: an endothelium-derived vasoconstricting peptide. Int J Pept Protein Res. 1988 Dec;32(6):519–526. doi: 10.1111/j.1399-3011.1988.tb01383.x. [DOI] [PubMed] [Google Scholar]
  24. Levin J. M., Garnier J. Improvements in a secondary structure prediction method based on a search for local sequence homologies and its use as a model building tool. Biochim Biophys Acta. 1988 Aug 10;955(3):283–295. doi: 10.1016/0167-4838(88)90206-3. [DOI] [PubMed] [Google Scholar]
  25. Ozaki H., Sato T., Kubota H., Hata Y., Katsube Y., Shimonishi Y. Molecular structure of the toxin domain of heat-stable enterotoxin produced by a pathogenic strain of Escherichia coli. A putative binding site for a binding protein on rat intestinal epithelial cell membranes. J Biol Chem. 1991 Mar 25;266(9):5934–5941. [PubMed] [Google Scholar]
  26. Price-Carter M., Gray W. R., Goldenberg D. P. Folding of omega-conotoxins. 1. Efficient disulfide-coupled folding of mature sequences in vitro. Biochemistry. 1996 Dec 3;35(48):15537–15546. doi: 10.1021/bi961574c. [DOI] [PubMed] [Google Scholar]
  27. Rittenhouse J., Marcus F. Peptide mapping by polyacrylamide gel electrophoresis after cleavage at aspartyl-prolyl peptide bonds in sodium dodecyl sulfate-containing buffers. Anal Biochem. 1984 May 1;138(2):442–448. doi: 10.1016/0003-2697(84)90836-4. [DOI] [PubMed] [Google Scholar]
  28. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  29. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  30. Rost B., Schneider R., Sander C. Protein fold recognition by prediction-based threading. J Mol Biol. 1997 Jul 18;270(3):471–480. doi: 10.1006/jmbi.1997.1101. [DOI] [PubMed] [Google Scholar]
  31. Schrader M., Jürgens M., Hess R., Schulz-Knappe P., Raida M., Forssmann W. G. Matrix-assisted laser desorption/ionisation mass spectrometry guided purification of human guanylin from blood ultrafiltrate. J Chromatogr A. 1997 Jul 25;776(1):139–145. doi: 10.1016/s0021-9673(97)00169-6. [DOI] [PubMed] [Google Scholar]
  32. Schulz A., Escher S., Marx U. C., Meyer M., Rösch P., Forssmann W. G., Adermann K. Carboxy-terminal extension stabilizes the topological stereoisomers of guanylin. J Pept Res. 1998 Dec;52(6):518–525. doi: 10.1111/j.1399-3011.1998.tb01256.x. [DOI] [PubMed] [Google Scholar]
  33. Schulz S., Chrisman T. D., Garbers D. L. Cloning and expression of guanylin. Its existence in various mammalian tissues. J Biol Chem. 1992 Aug 15;267(23):16019–16021. [PubMed] [Google Scholar]
  34. Schulz S., Lopez M. J., Kuhn M., Garbers D. L. Disruption of the guanylyl cyclase-C gene leads to a paradoxical phenotype of viable but heat-stable enterotoxin-resistant mice. J Clin Invest. 1997 Sep 15;100(6):1590–1595. doi: 10.1172/JCI119683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shinde U., Inouye M. Intramolecular chaperones and protein folding. Trends Biochem Sci. 1993 Nov;18(11):442–446. doi: 10.1016/0968-0004(93)90146-e. [DOI] [PubMed] [Google Scholar]
  36. Skelton N. J., Garcia K. C., Goeddel D. V., Quan C., Burnier J. P. Determination of the solution structure of the peptide hormone guanylin: observation of a novel form of topological stereoisomerism. Biochemistry. 1994 Nov 22;33(46):13581–13592. doi: 10.1021/bi00250a010. [DOI] [PubMed] [Google Scholar]
  37. Sreerama N., Woody R. W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem. 1993 Feb 15;209(1):32–44. doi: 10.1006/abio.1993.1079. [DOI] [PubMed] [Google Scholar]
  38. Vaandrager A. B., Bot A. G., De Jonge H. R. Guanosine 3',5'-cyclic monophosphate-dependent protein kinase II mediates heat-stable enterotoxin-provoked chloride secretion in rat intestine. Gastroenterology. 1997 Feb;112(2):437–443. doi: 10.1053/gast.1997.v112.pm9024297. [DOI] [PubMed] [Google Scholar]
  39. Wishart D. S., Bigam C. G., Holm A., Hodges R. S., Sykes B. D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67–81. doi: 10.1007/BF00227471. [DOI] [PubMed] [Google Scholar]
  40. Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
  41. Yamaguchi H., Nakazato M., Miyazato M., Kangawa K., Matsuo H., Matsukura S. Two novel rat guanylin molecules, guanylin-94 and guanylin-16, do not increase cyclic GMP production in T84 cells. Biochem Biophys Res Commun. 1995 Sep 25;214(3):1204–1210. doi: 10.1006/bbrc.1995.2414. [DOI] [PubMed] [Google Scholar]
  42. de Sauvage F. J., Keshav S., Kuang W. J., Gillett N., Henzel W., Goeddel D. V. Precursor structure, expression, and tissue distribution of human guanylin. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9089–9093. doi: 10.1073/pnas.89.19.9089. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES