Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Sep;8(9):1843–1849. doi: 10.1110/ps.8.9.1843

Increasing protein stability by altering long-range coulombic interactions.

G R Grimsley 1, K L Shaw 1, L R Fee 1, R W Alston 1, B M Huyghues-Despointes 1, R L Thurlkill 1, J M Scholtz 1, C N Pace 1
PMCID: PMC2144408  PMID: 10493585

Abstract

It is difficult to increase protein stability by adding hydrogen bonds or burying nonpolar surface. The results described here show that reversing the charge on a side chain on the surface of a protein is a useful way of increasing stability. Ribonuclease T1 is an acidic protein with a pI approximately 3.5 and a net charge of approximately -6 at pH 7. The side chain of Asp49 is hyperexposed, not hydrogen bonded, and 8 A from the nearest charged group. The stability of Asp49Ala is 0.5 kcal/mol greater than wild-type at pH 7 and 0.4 kcal/mol less at pH 2.5. The stability of Asp49His is 1.1 kcal/mol greater than wild-type at pH 6, where the histidine 49 side chain (pKa = 7.2) is positively charged. Similar results were obtained with ribonuclease Sa where Asp25Lys is 0.9 kcal/mol and Glu74Lys is 1.1 kcal/mol more stable than the wild-type enzyme. These results suggest that protein stability can be increased by improving the coulombic interactions among charged groups on the protein surface. In addition, the stability of RNase T1 decreases as more hydrophobic aromatic residues are substituted for Ala49, indicating a reverse hydrophobic effect.

Full Text

The Full Text of this article is available as a PDF (157.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. E., Becktel W. J., Dahlquist F. W. pH-induced denaturation of proteins: a single salt bridge contributes 3-5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry. 1990 Mar 6;29(9):2403–2408. doi: 10.1021/bi00461a025. [DOI] [PubMed] [Google Scholar]
  2. Antosiewicz J., McCammon J. A., Gilson M. K. The determinants of pKas in proteins. Biochemistry. 1996 Jun 18;35(24):7819–7833. doi: 10.1021/bi9601565. [DOI] [PubMed] [Google Scholar]
  3. Barlow D. J., Thornton J. M. Ion-pairs in proteins. J Mol Biol. 1983 Aug 25;168(4):867–885. doi: 10.1016/s0022-2836(83)80079-5. [DOI] [PubMed] [Google Scholar]
  4. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  5. Bowler B. E., Dong A., Caughey W. S. Characterization of the guanidine hydrochloride-denatured state of iso-1-cytochrome c by infrared spectroscopy. Biochemistry. 1994 Mar 8;33(9):2402–2408. doi: 10.1021/bi00175a008. [DOI] [PubMed] [Google Scholar]
  6. Bowler B. E., May K., Zaragoza T., York P., Dong A., Caughey W. S. Destabilizing effects of replacing a surface lysine of cytochrome c with aromatic amino acids: implications for the denatured state. Biochemistry. 1993 Jan 12;32(1):183–190. doi: 10.1021/bi00052a024. [DOI] [PubMed] [Google Scholar]
  7. Dillet V., Dyson H. J., Bashford D. Calculations of electrostatic interactions and pKas in the active site of Escherichia coli thioredoxin. Biochemistry. 1998 Jul 14;37(28):10298–10306. doi: 10.1021/bi980333x. [DOI] [PubMed] [Google Scholar]
  8. Fisher B. M., Schultz L. W., Raines R. T. Coulombic effects of remote subsites on the active site of ribonuclease A. Biochemistry. 1998 Dec 15;37(50):17386–17401. doi: 10.1021/bi981369s. [DOI] [PubMed] [Google Scholar]
  9. Forsyth W. R., Gilson M. K., Antosiewicz J., Jaren O. R., Robertson A. D. Theoretical and experimental analysis of ionization equilibria in ovomucoid third domain. Biochemistry. 1998 Jun 16;37(24):8643–8652. doi: 10.1021/bi980187v. [DOI] [PubMed] [Google Scholar]
  10. Gilson M. K., Honig B. H. Energetics of charge-charge interactions in proteins. Proteins. 1988;3(1):32–52. doi: 10.1002/prot.340030104. [DOI] [PubMed] [Google Scholar]
  11. Greene R. F., Jr, Pace C. N. Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. J Biol Chem. 1974 Sep 10;249(17):5388–5393. [PubMed] [Google Scholar]
  12. Hebert E. J., Giletto A., Sevcik J., Urbanikova L., Wilson K. S., Dauter Z., Pace C. N. Contribution of a conserved asparagine to the conformational stability of ribonucleases Sa, Ba, and T1. Biochemistry. 1998 Nov 17;37(46):16192–16200. doi: 10.1021/bi9815243. [DOI] [PubMed] [Google Scholar]
  13. Hebert E. J., Grimsley G. R., Hartley R. W., Horn G., Schell D., Garcia S., Both V., Sevcik J., Pace C. N. Purification of ribonucleases Sa, Sa2, and Sa3 after expression in Escherichia coli. Protein Expr Purif. 1997 Nov;11(2):162–168. doi: 10.1006/prep.1997.0776. [DOI] [PubMed] [Google Scholar]
  14. Herrmann L., Bowler B. E., Dong A., Caughey W. S. The effects of hydrophilic to hydrophobic surface mutations on the denatured state of iso-1-cytochrome c: investigation of aliphatic residues. Biochemistry. 1995 Mar 7;34(9):3040–3047. doi: 10.1021/bi00009a035. [DOI] [PubMed] [Google Scholar]
  15. Hollecker M., Creighton T. E. Effect on protein stability of reversing the charge on amino groups. Biochim Biophys Acta. 1982 Mar 4;701(3):395–404. doi: 10.1016/0167-4838(82)90243-6. [DOI] [PubMed] [Google Scholar]
  16. Imoto T. Stabilization of protein. Cell Mol Life Sci. 1997 Mar;53(3):215–223. doi: 10.1007/PL00000593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Inagaki F., Kawano Y., Shimada I., Takahashi K., Miyazawa T. Nuclear magnetic resonance study on the microenvironments of histidine residues of ribonuclease T1 and carboxymethylated ribonuclease T1. J Biochem. 1981 Apr;89(4):1185–1195. [PubMed] [Google Scholar]
  18. Kemmink J., van Mierlo C. P., Scheek R. M., Creighton T. E. Local structure due to an aromatic-amide interaction observed by 1H-nuclear magnetic resonance spectroscopy in peptides related to the N terminus of bovine pancreatic trypsin inhibitor. J Mol Biol. 1993 Mar 5;230(1):312–322. doi: 10.1006/jmbi.1993.1144. [DOI] [PubMed] [Google Scholar]
  19. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  20. Loewenthal R., Sancho J., Reinikainen T., Fersht A. R. Long-range surface charge-charge interactions in proteins. Comparison of experimental results with calculations from a theoretical method. J Mol Biol. 1993 Jul 20;232(2):574–583. doi: 10.1006/jmbi.1993.1412. [DOI] [PubMed] [Google Scholar]
  21. Lumb K. J., Kim P. S. Formation of a hydrophobic cluster in denatured bovine pancreatic trypsin inhibitor. J Mol Biol. 1994 Feb 18;236(2):412–420. doi: 10.1006/jmbi.1994.1153. [DOI] [PubMed] [Google Scholar]
  22. Malakauskas S. M., Mayo S. L. Design, structure and stability of a hyperthermophilic protein variant. Nat Struct Biol. 1998 Jun;5(6):470–475. doi: 10.1038/nsb0698-470. [DOI] [PubMed] [Google Scholar]
  23. Marqusee S., Baldwin R. L. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8898–8902. doi: 10.1073/pnas.84.24.8898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Martinez-Oyanedel J., Choe H. W., Heinemann U., Saenger W. Ribonuclease T1 with free recognition and catalytic site: crystal structure analysis at 1.5 A resolution. J Mol Biol. 1991 Nov 20;222(2):335–352. doi: 10.1016/0022-2836(91)90215-r. [DOI] [PubMed] [Google Scholar]
  25. McNutt M., Mullins L. S., Raushel F. M., Pace C. N. Contribution of histidine residues to the conformational stability of ribonuclease T1 and mutant Glu-58----Ala. Biochemistry. 1990 Aug 21;29(33):7572–7576. doi: 10.1021/bi00485a005. [DOI] [PubMed] [Google Scholar]
  26. Meeker A. K., Garcia-Moreno B., Shortle D. Contributions of the ionizable amino acids to the stability of staphylococcal nuclease. Biochemistry. 1996 May 21;35(20):6443–6449. doi: 10.1021/bi960171+. [DOI] [PubMed] [Google Scholar]
  27. Milla M. E., Brown B. M., Sauer R. T. Protein stability effects of a complete set of alanine substitutions in Arc repressor. Nat Struct Biol. 1994 Aug;1(8):518–523. doi: 10.1038/nsb0894-518. [DOI] [PubMed] [Google Scholar]
  28. Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Neri D., Billeter M., Wider G., Wüthrich K. NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science. 1992 Sep 11;257(5076):1559–1563. doi: 10.1126/science.1523410. [DOI] [PubMed] [Google Scholar]
  30. Oliveberg M., Arcus V. L., Fersht A. R. pKA values of carboxyl groups in the native and denatured states of barnase: the pKA values of the denatured state are on average 0.4 units lower than those of model compounds. Biochemistry. 1995 Jul 25;34(29):9424–9433. doi: 10.1021/bi00029a018. [DOI] [PubMed] [Google Scholar]
  31. Oliveberg M., Vuilleumier S., Fersht A. R. Thermodynamic study of the acid denaturation of barnase and its dependence on ionic strength: evidence for residual electrostatic interactions in the acid/thermally denatured state. Biochemistry. 1994 Jul 26;33(29):8826–8832. doi: 10.1021/bi00195a026. [DOI] [PubMed] [Google Scholar]
  32. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  33. Pace C. N., Hebert E. J., Shaw K. L., Schell D., Both V., Krajcikova D., Sevcik J., Wilson K. S., Dauter Z., Hartley R. W. Conformational stability and thermodynamics of folding of ribonucleases Sa, Sa2 and Sa3. J Mol Biol. 1998 May 29;279(1):271–286. doi: 10.1006/jmbi.1998.1760. [DOI] [PubMed] [Google Scholar]
  34. Pace C. N., Laurents D. V., Erickson R. E. Urea denaturation of barnase: pH dependence and characterization of the unfolded state. Biochemistry. 1992 Mar 17;31(10):2728–2734. doi: 10.1021/bi00125a013. [DOI] [PubMed] [Google Scholar]
  35. Pace C. N. Measuring and increasing protein stability. Trends Biotechnol. 1990 Apr;8(4):93–98. doi: 10.1016/0167-7799(90)90146-o. [DOI] [PubMed] [Google Scholar]
  36. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pakula A. A., Sauer R. T. Reverse hydrophobic effects relieved by amino-acid substitutions at a protein surface. Nature. 1990 Mar 22;344(6264):363–364. doi: 10.1038/344363a0. [DOI] [PubMed] [Google Scholar]
  38. Peterson R. W., Nicholson E. M., Thapar R., Klevit R. E., Scholtz J. M. Increased helix and protein stability through the introduction of a new tertiary hydrogen bond. J Mol Biol. 1999 Mar 12;286(5):1609–1619. doi: 10.1006/jmbi.1999.2574. [DOI] [PubMed] [Google Scholar]
  39. Robinson C. R., Sligar S. G. Electrostatic stabilization in four-helix bundle proteins. Protein Sci. 1993 May;2(5):826–837. doi: 10.1002/pro.5560020512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ruvinov S., Wang L., Ruan B., Almog O., Gilliland G. L., Eisenstein E., Bryan P. N. Engineering the independent folding of the subtilisin BPN' prodomain: analysis of two-state folding versus protein stability. Biochemistry. 1997 Aug 26;36(34):10414–10421. doi: 10.1021/bi9703958. [DOI] [PubMed] [Google Scholar]
  41. Sali D., Bycroft M., Fersht A. R. Surface electrostatic interactions contribute little of stability of barnase. J Mol Biol. 1991 Aug 5;220(3):779–788. doi: 10.1016/0022-2836(91)90117-o. [DOI] [PubMed] [Google Scholar]
  42. Schwalbe H., Fiebig K. M., Buck M., Jones J. A., Grimshaw S. B., Spencer A., Glaser S. J., Smith L. J., Dobson C. M. Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry. 1997 Jul 22;36(29):8977–8991. doi: 10.1021/bi970049q. [DOI] [PubMed] [Google Scholar]
  43. Schwehm J. M., Kristyanne E. S., Biggers C. C., Stites W. E. Stability effects of increasing the hydrophobicity of solvent-exposed side chains in staphylococcal nuclease. Biochemistry. 1998 May 12;37(19):6939–6948. doi: 10.1021/bi9725069. [DOI] [PubMed] [Google Scholar]
  44. Shaw A., Bott R. Engineering enzymes for stability. Curr Opin Struct Biol. 1996 Aug;6(4):546–550. doi: 10.1016/s0959-440x(96)80122-9. [DOI] [PubMed] [Google Scholar]
  45. Shirley B. A., Laurents D. V. Purification of recombinant ribonuclease T1 expressed in Escherichia coli. J Biochem Biophys Methods. 1990 Mar;20(3):181–188. doi: 10.1016/0165-022x(90)90076-o. [DOI] [PubMed] [Google Scholar]
  46. Shirley B. A., Stanssens P., Hahn U., Pace C. N. Contribution of hydrogen bonding to the conformational stability of ribonuclease T1. Biochemistry. 1992 Jan 28;31(3):725–732. doi: 10.1021/bi00118a013. [DOI] [PubMed] [Google Scholar]
  47. Shortle D., Abeygunawardana C. NMR analysis of the residual structure in the denatured state of an unusual mutant of staphylococcal nuclease. Structure. 1993 Oct 15;1(2):121–134. doi: 10.1016/0969-2126(93)90027-e. [DOI] [PubMed] [Google Scholar]
  48. Spassov V. Z., Karshikoff A. D., Ladenstein R. Optimization of the electrostatic interactions in proteins of different functional and folding type. Protein Sci. 1994 Sep;3(9):1556–1569. doi: 10.1002/pro.5560030921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sun D. P., Sauer U., Nicholson H., Matthews B. W. Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis. Biochemistry. 1991 Jul 23;30(29):7142–7153. doi: 10.1021/bi00243a015. [DOI] [PubMed] [Google Scholar]
  50. Tan Y. J., Oliveberg M., Davis B., Fersht A. R. Perturbed pKA-values in the denatured states of proteins. J Mol Biol. 1995 Dec 15;254(5):980–992. doi: 10.1006/jmbi.1995.0670. [DOI] [PubMed] [Google Scholar]
  51. Thomson J. A., Shirley B. A., Grimsley G. R., Pace C. N. Conformational stability and mechanism of folding of ribonuclease T1. J Biol Chem. 1989 Jul 15;264(20):11614–11620. [PubMed] [Google Scholar]
  52. Tissot A. C., Vuilleumier S., Fersht A. R. Importance of two buried salt bridges in the stability and folding pathway of barnase. Biochemistry. 1996 May 28;35(21):6786–6794. doi: 10.1021/bi952930e. [DOI] [PubMed] [Google Scholar]
  53. Van den Burg B., Vriend G., Veltman O. R., Venema G., Eijsink V. G. Engineering an enzyme to resist boiling. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2056–2060. doi: 10.1073/pnas.95.5.2056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wada A., Nakamura H. Nature of the charge distribution in proteins. Nature. 1981 Oct 29;293(5835):757–758. doi: 10.1038/293757a0. [DOI] [PubMed] [Google Scholar]
  55. Warwicker J. Simplified methods for pKa and acid pH-dependent stability estimation in proteins: removing dielectric and counterion boundaries. Protein Sci. 1999 Feb;8(2):418–425. doi: 10.1110/ps.8.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Yu M. H., Weissman J. S., Kim P. S. Contribution of individual side-chains to the stability of BPTI examined by alanine-scanning mutagenesis. J Mol Biol. 1995 Jun 2;249(2):388–397. doi: 10.1006/jmbi.1995.0304. [DOI] [PubMed] [Google Scholar]
  57. Yu Y., Makhatadze G. I., Pace C. N., Privalov P. L. Energetics of ribonuclease T1 structure. Biochemistry. 1994 Mar 22;33(11):3312–3319. doi: 10.1021/bi00177a023. [DOI] [PubMed] [Google Scholar]
  58. Zhang X. J., Baase W. A., Shoichet B. K., Wilson K. P., Matthews B. W. Enhancement of protein stability by the combination of point mutations in T4 lysozyme is additive. Protein Eng. 1995 Oct;8(10):1017–1022. doi: 10.1093/protein/8.10.1017. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES