Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Feb;165(2):461–466. doi: 10.1128/jb.165.2.461-466.1986

Luciferase-dependent oxygen consumption by bioluminescent vibrios.

J C Makemson
PMCID: PMC214441  PMID: 3944057

Abstract

Oxygen uptake due to luciferase in two luminous Vibrio species was estimated in vivo by utilizing inhibitors having specificities for luciferase (decanol) and cytochromes (cyanide). Cyanide titration of respiration revealed a component of oxygen uptake less sensitive to cyanide which was completely inhibitable by low concentrations of decanol. From this it was estimated that in vivo luciferase is responsible for less than 12% (Vibrio harveyi) or 20% (Vibrio fischeri) of the total respiration. From these data in vivo bioluminescent quantum yields are estimated to be not lower than 1.7 and 2.6%, respectively.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumstark A. L., Cline T. W., Hastings J. W. Reversible steps in the reaction of aldehydes with bacterial luciferase intermediates. Arch Biochem Biophys. 1979 Apr 1;193(2):449–455. doi: 10.1016/0003-9861(79)90051-1. [DOI] [PubMed] [Google Scholar]
  2. Kössler F. Physiologische Untersuchungen zur Atmung von vibro luminosus Beijerinck. Arch Mikrobiol. 1968;64(2):146–157. [PubMed] [Google Scholar]
  3. Makemson J. C., Hastings J. W. Poising of the arginine pool and control of bioluminescence in Beneckea harveyi. J Bacteriol. 1979 Nov;140(2):532–542. doi: 10.1128/jb.140.2.532-542.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Makemson J., Hastings J. W. Inhibition of bacterial bioluminescence by pargyline. Arch Biochem Biophys. 1979 Sep;196(2):396–402. doi: 10.1016/0003-9861(79)90290-x. [DOI] [PubMed] [Google Scholar]
  5. Mitchell G. W., Hastings J. W. A stable, inexpensive, solid-state photomultiplier photometer. Anal Biochem. 1971 Jan;39(1):243–250. doi: 10.1016/0003-2697(71)90481-7. [DOI] [PubMed] [Google Scholar]
  6. Nealson K. H., Hastings J. W. Bacterial bioluminescence: its control and ecological significance. Microbiol Rev. 1979 Dec;43(4):496–518. doi: 10.1128/mr.43.4.496-518.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nealson K. H., Hastings J. W. The inhibition of bacterial luciferase by mixed function oxidase inhibitors. J Biol Chem. 1972 Feb 10;247(3):888–894. [PubMed] [Google Scholar]
  8. Tu S. C. Isolation and properties of bacterial luciferase-oxygenated flavin intermediate complexed with long-chain alcohols. Biochemistry. 1979 Dec 25;18(26):5940–5945. doi: 10.1021/bi00593a028. [DOI] [PubMed] [Google Scholar]
  9. Ulitzur S., Hastings J. W. Growth, luminescence, respiration, and the ATP pool during autoinduction in Beneckea harveyi. J Bacteriol. 1978 Mar;133(3):1307–1313. doi: 10.1128/jb.133.3.1307-1313.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ulitzur S., Reinhertz A., Hastings J. W. Factors affecting the cellular expression of bacterial luciferase. Arch Microbiol. 1981 Mar;129(1):67–71. doi: 10.1007/BF00417183. [DOI] [PubMed] [Google Scholar]
  11. Watanabe H., Mimura N., Takimoto A., Nakamura T. Luminescence and respiratory activities of Photobacterium phosphoreum. Competition for cellular reducing power. J Biochem. 1975 Jun;77(6):1147–1155. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES