Abstract
S100B(beta beta) is a dimeric Ca2+-binding protein that interacts with p53, inhibits its phosphorylation by protein kinase C (PKC) and promotes disassembly of the p53 tetramer. Likewise, a 22 residue peptide derived from the C-terminal regulatory domain of p53 has been shown to interact with S100B(beta beta) in a Ca2+-dependent manner and inhibits its phosphorylation by PKC. Hence, structural studies of Ca2+-loaded S100B(beta beta) bound to the p53 peptide were initiated to characterize this interaction. Analysis of nuclear Overhauser effect (NOE) correlations, amide proton exchange rates, 3J(NH-H alpha) coupling constants, and chemical shift index data show that, like apo- and Ca2+-bound S100B(beta beta), S100B remains a dimer in the p53 peptide complex, and each subunit has four helices (helix 1, Glu2-Arg20; helix 2, Lys29-Asn38; helix 3, Gln50-Asp61; helix 4, Phe70-Phe87), four loops (loop 1, Glu21-His25; loop 2, Glu39-Glu49; loop 3, Glu62-Gly66; loop 4, Phe88-Glu91), and two beta-strands (beta-strand 1, Lys26-Lys28; beta-strand 2, Glu67-Asp69), which forms a short antiparallel beta-sheet. However, in the presence of the p53 peptide helix 4 is longer by five residues than in apo- or Ca2+-bound S100B(beta beta). Furthermore, the amide proton exchange rates in helix 3 (K55, V56, E58, T59, L60, D61) are significantly slower than those of Ca2+-bound S100B(beta beta). Together, these observations plus intermolecular NOE correlations between the p53 peptide and S100B(beta beta) support the notion that the p53 peptide binds in a region of S100B(beta beta), which includes residues in helix 2, helix 3, loop 2, and the C-terminal loop, and that binding of the p53 peptide interacts with and induces the extension of helix 4.
Full Text
The Full Text of this article is available as a PDF (597.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amburgey J. C., Abildgaard F., Starich M. R., Shah S., Hilt D. C., Weber D. J. 1H, 13C and 15N NMR assignments and solution secondary structure of rat Apo-S100 beta. J Biomol NMR. 1995 Sep;6(2):171–179. doi: 10.1007/BF00211781. [DOI] [PubMed] [Google Scholar]
- Baudier J., Cole R. D. Interactions between the microtubule-associated tau proteins and S100b regulate tau phosphorylation by the Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1988 Apr 25;263(12):5876–5883. [PubMed] [Google Scholar]
- Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
- Drohat A. C., Amburgey J. C., Abildgaard F., Starich M. R., Baldisseri D., Weber D. J. Solution structure of rat apo-S100B(beta beta) as determined by NMR spectroscopy. Biochemistry. 1996 Sep 10;35(36):11577–11588. doi: 10.1021/bi9612226. [DOI] [PubMed] [Google Scholar]
- Drohat A. C., Baldisseri D. M., Rustandi R. R., Weber D. J. Solution structure of calcium-bound rat S100B(betabeta) as determined by nuclear magnetic resonance spectroscopy,. Biochemistry. 1998 Mar 3;37(9):2729–2740. doi: 10.1021/bi972635p. [DOI] [PubMed] [Google Scholar]
- Drohat A. C., Nenortas E., Beckett D., Weber D. J. Oligomerization state of S100B at nanomolar concentration determined by large-zone analytical gel filtration chromatography. Protein Sci. 1997 Jul;6(7):1577–1582. doi: 10.1002/pro.5560060721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drohat A. C., Tjandra N., Baldisseri D. M., Weber D. J. The use of dipolar couplings for determining the solution structure of rat apo-S100B(betabeta). Protein Sci. 1999 Apr;8(4):800–809. doi: 10.1110/ps.8.4.800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edison A. S., Abildgaard F., Westler W. M., Mooberry E. S., Markley J. L. Practical introduction to theory and implementation of multinuclear, multidimensional nuclear magnetic resonance experiments. Methods Enzymol. 1994;239:3–79. doi: 10.1016/s0076-6879(94)39003-7. [DOI] [PubMed] [Google Scholar]
- Garbuglia M., Verzini M., Rustandi R. R., Osterloh D., Weber D. J., Gerke V., Donato R. Role of the C-terminal extension in the interaction of S100A1 with GFAP, tubulin, the S100A1- and S100B-inhibitory peptide, TRTK-12, and a peptide derived from p53, and the S100A1 inhibitory effect on GFAP polymerization. Biochem Biophys Res Commun. 1999 Jan 8;254(1):36–41. doi: 10.1006/bbrc.1998.9881. [DOI] [PubMed] [Google Scholar]
- Kilby P. M., Van Eldik L. J., Roberts G. C. The solution structure of the bovine S100B protein dimer in the calcium-free state. Structure. 1996 Sep 15;4(9):1041–1052. doi: 10.1016/s0969-2126(96)00111-6. [DOI] [PubMed] [Google Scholar]
- Kligman D., Hilt D. C. The S100 protein family. Trends Biochem Sci. 1988 Nov;13(11):437–443. doi: 10.1016/0968-0004(88)90218-6. [DOI] [PubMed] [Google Scholar]
- Kube E., Becker T., Weber K., Gerke V. Protein-protein interaction studied by site-directed mutagenesis. Characterization of the annexin II-binding site on p11, a member of the S100 protein family. J Biol Chem. 1992 Jul 15;267(20):14175–14182. [PubMed] [Google Scholar]
- Kuboniwa H., Grzesiek S., Delaglio F., Bax A. Measurement of HN-H alpha J couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methods. J Biomol NMR. 1994 Nov;4(6):871–878. doi: 10.1007/BF00398416. [DOI] [PubMed] [Google Scholar]
- Lackmann M., Rajasekariah P., Iismaa S. E., Jones G., Cornish C. J., Hu S., Simpson R. J., Moritz R. L., Geczy C. L. Identification of a chemotactic domain of the pro-inflammatory S100 protein CP-10. J Immunol. 1993 Apr 1;150(7):2981–2991. [PubMed] [Google Scholar]
- Landar A., Hall T. L., Cornwall E. H., Correia J. J., Drohat A. C., Weber D. J., Zimmer D. B. The role of cysteine residues in S100B dimerization and regulation of target protein activity. Biochim Biophys Acta. 1997 Nov 14;1343(1):117–129. doi: 10.1016/s0167-4838(97)00126-x. [DOI] [PubMed] [Google Scholar]
- Landar A., Rustandi R. R., Weber D. J., Zimmer D. B. S100A1 utilizes different mechanisms for interacting with calcium-dependent and calcium-independent target proteins. Biochemistry. 1998 Dec 15;37(50):17429–17438. doi: 10.1021/bi9817921. [DOI] [PubMed] [Google Scholar]
- Marion D., Driscoll P. C., Kay L. E., Wingfield P. T., Bax A., Gronenborn A. M., Clore G. M. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989 Jul 25;28(15):6150–6156. doi: 10.1021/bi00441a004. [DOI] [PubMed] [Google Scholar]
- Matsumura H., Shiba T., Inoue T., Harada S., Kai Y. A novel mode of target recognition suggested by the 2.0 A structure of holo S100B from bovine brain. Structure. 1998 Feb 15;6(2):233–241. doi: 10.1016/s0969-2126(98)00024-0. [DOI] [PubMed] [Google Scholar]
- Mori S., Abeygunawardana C., Johnson M. O., van Zijl P. C. Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson B. 1995 Jul;108(1):94–98. doi: 10.1006/jmrb.1995.1109. [DOI] [PubMed] [Google Scholar]
- Pozdnyakov N., Margulis A., Sitaramayya A. Identification of effector binding sites on S100 beta: studies with guanylate cyclase and p80, a retinal phosphoprotein. Biochemistry. 1998 Jul 28;37(30):10701–10708. doi: 10.1021/bi9802115. [DOI] [PubMed] [Google Scholar]
- Rustandi R. R., Drohat A. C., Baldisseri D. M., Wilder P. T., Weber D. J. The Ca(2+)-dependent interaction of S100B(beta beta) with a peptide derived from p53. Biochemistry. 1998 Feb 17;37(7):1951–1960. doi: 10.1021/bi972701n. [DOI] [PubMed] [Google Scholar]
- Smith S. P., Shaw G. S. A novel calcium-sensitive switch revealed by the structure of human S100B in the calcium-bound form. Structure. 1998 Feb 15;6(2):211–222. doi: 10.1016/s0969-2126(98)00022-7. [DOI] [PubMed] [Google Scholar]
- Smith S. P., Shaw G. S. Assignment and secondary structure of calcium-bound human S100B. J Biomol NMR. 1997 Jul;10(1):77–88. doi: 10.1023/a:1018397213369. [DOI] [PubMed] [Google Scholar]
- Wilder P. T., Rustandi R. R., Drohat A. C., Weber D. J. S100B(betabeta) inhibits the protein kinase C-dependent phosphorylation of a peptide derived from p53 in a Ca2+-dependent manner. Protein Sci. 1998 Mar;7(3):794–798. doi: 10.1002/pro.5560070330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR. 1994 Mar;4(2):171–180. doi: 10.1007/BF00175245. [DOI] [PubMed] [Google Scholar]
