Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Aug;8(8):1696–1701. doi: 10.1110/ps.8.8.1696

Effects of N-butyldeoxynojirimycin and the Lec3.2.8.1 mutant phenotype on N-glycan processing in Chinese hamster ovary cells: application to glycoprotein crystallization.

T D Butters 1, L M Sparks 1, K Harlos 1, S Ikemizu 1, D I Stuart 1, E Y Jones 1, S J Davis 1
PMCID: PMC2144425  PMID: 10452614

Abstract

Heterologous gene expression in either (1) the glycosylation-defective, mutant Chinese hamster ovary cell line, Lec3.2.8.1, or (2) the presence of the alpha-glucosidase inhibitor, N-butyldeoxynojirimycin facilitates the trimming of N-linked glycans of glycoproteins to single N-acetylglucosamine (GlcNAc) residues with endoglycosidase H (endo H). Both approaches are somewhat inefficient, however, with as little as 12% of the total protein being rendered fully endo H-sensitive under these conditions. It is shown here that the combined effects of these approaches on the restriction of oligosaccharide processing are essentially additive, thereby allowing the production of glycoproteins that are essentially completely endo H-sensitive. The preparation of a soluble chimeric form of CD58, the ligand of the human T-cell surface recognition molecule CD2, illustrates the usefulness of the combined approach when expression levels are low or the deglycosylated protein is unstable at low pH. The endo H-treated chimera produced crystals of space group P3(1)21 or P3(2)21, and unit cell dimensions a = b = 116.4 A, c = 51.4 A alpha = beta = 90 degrees , gamma = 120 degrees , that diffract to a maximum resolution of 1.8 A.

Full Text

The Full Text of this article is available as a PDF (230.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anstee D. J., Gardner B., Spring F. A., Holmes C. H., Simpson K. L., Parsons S. F., Mallinson G., Yousaf S. M., Judson P. A. New monoclonal antibodies in CD44 and CD58: their use to quantify CD44 and CD58 on normal human erythrocytes and to compare the distribution of CD44 and CD58 in human tissues. Immunology. 1991 Oct;74(2):197–205. [PMC free article] [PubMed] [Google Scholar]
  2. Bodian D. L., Jones E. Y., Harlos K., Stuart D. I., Davis S. J. Crystal structure of the extracellular region of the human cell adhesion molecule CD2 at 2.5 A resolution. Structure. 1994 Aug 15;2(8):755–766. doi: 10.1016/s0969-2126(94)00076-x. [DOI] [PubMed] [Google Scholar]
  3. Davis S. J., Davies E. A., Barclay A. N., Daenke S., Bodian D. L., Jones E. Y., Stuart D. I., Butters T. D., Dwek R. A., van der Merwe P. A. Ligand binding by the immunoglobulin superfamily recognition molecule CD2 is glycosylation-independent. J Biol Chem. 1995 Jan 6;270(1):369–375. doi: 10.1074/jbc.270.1.369. [DOI] [PubMed] [Google Scholar]
  4. Davis S. J., Ikemizu S., Wild M. K., van der Merwe P. A. CD2 and the nature of protein interactions mediating cell-cell recognition. Immunol Rev. 1998 Jun;163:217–236. doi: 10.1111/j.1600-065x.1998.tb01199.x. [DOI] [PubMed] [Google Scholar]
  5. Davis S. J., Puklavec M. J., Ashford D. A., Harlos K., Jones E. Y., Stuart D. I., Williams A. F. Expression of soluble recombinant glycoproteins with predefined glycosylation: application to the crystallization of the T-cell glycoprotein CD2. Protein Eng. 1993 Feb;6(2):229–232. doi: 10.1093/protein/6.2.229. [DOI] [PubMed] [Google Scholar]
  6. Davis S. J., van der Merwe P. A. The structure and ligand interactions of CD2: implications for T-cell function. Immunol Today. 1996 Apr;17(4):177–187. doi: 10.1016/0167-5699(96)80617-7. [DOI] [PubMed] [Google Scholar]
  7. Gray F., Cyster J. G., Willis A. C., Barclay A. N., Williams A. F. Structural analysis of the CD2 T lymphocyte antigen by site-directed mutagenesis to introduce a disulphide bond into domain 1. Protein Eng. 1993 Nov;6(8):965–970. doi: 10.1093/protein/6.8.965. [DOI] [PubMed] [Google Scholar]
  8. Guile G. R., Rudd P. M., Wing D. R., Prime S. B., Dwek R. A. A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem. 1996 Sep 5;240(2):210–226. doi: 10.1006/abio.1996.0351. [DOI] [PubMed] [Google Scholar]
  9. Jones E. Y., Davis S. J., Williams A. F., Harlos K., Stuart D. I. Crystal structure at 2.8 A resolution of a soluble form of the cell adhesion molecule CD2. Nature. 1992 Nov 19;360(6401):232–239. doi: 10.1038/360232a0. [DOI] [PubMed] [Google Scholar]
  10. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  11. Petrescu A. J., Butters T. D., Reinkensmeier G., Petrescu S., Platt F. M., Dwek R. A., Wormald M. R. The solution NMR structure of glucosylated N-glycans involved in the early stages of glycoprotein biosynthesis and folding. EMBO J. 1997 Jul 16;16(14):4302–4310. doi: 10.1093/emboj/16.14.4302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rudd P. M., Wormald M. R., Harvey D. J., Devasahayam M., McAlister M. S., Brown M. H., Davis S. J., Barclay A. N., Dwek R. A. Oligosaccharide analysis and molecular modeling of soluble forms of glycoproteins belonging to the Ly-6, scavenger receptor, and immunoglobulin superfamilies expressed in Chinese hamster ovary cells. Glycobiology. 1999 May;9(5):443–458. doi: 10.1093/glycob/9.5.443. [DOI] [PubMed] [Google Scholar]
  13. Stanley P. Selection of specific wheat germ agglutinin-resistant (WgaR) phenotypes from Chinese hamster ovary cell populations containing numerous lecR genotypes. Mol Cell Biol. 1981 Aug;1(8):687–696. doi: 10.1128/mcb.1.8.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Williams A. F., Barclay A. N. The immunoglobulin superfamily--domains for cell surface recognition. Annu Rev Immunol. 1988;6:381–405. doi: 10.1146/annurev.iy.06.040188.002121. [DOI] [PubMed] [Google Scholar]
  15. Wlodawer A., Davies D., Petsko G., Rossmann M., Olson A., Sussman J. L. Immediate release of crystallographic data: a proposal. Science. 1998 Jan 16;279(5349):306–307. doi: 10.1126/science.279.5349.302e. [DOI] [PubMed] [Google Scholar]
  16. van der Merwe P. A., Barclay A. N., Mason D. W., Davies E. A., Morgan B. P., Tone M., Krishnam A. K., Ianelli C., Davis S. J. Human cell-adhesion molecule CD2 binds CD58 (LFA-3) with a very low affinity and an extremely fast dissociation rate but does not bind CD48 or CD59. Biochemistry. 1994 Aug 23;33(33):10149–10160. doi: 10.1021/bi00199a043. [DOI] [PubMed] [Google Scholar]
  17. van der Merwe P. A., Bodian D. L., Daenke S., Linsley P., Davis S. J. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med. 1997 Feb 3;185(3):393–403. doi: 10.1084/jem.185.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES