Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1999 Aug;8(8):1675–1688. doi: 10.1110/ps.8.8.1675

Folding propensities of synthetic peptide fragments covering the entire sequence of phage 434 Cro protein.

S Padmanabhan 1, M A Jiménez 1, M Rico 1
PMCID: PMC2144428  PMID: 10452612

Abstract

The phage 434 Cro protein, the N-terminal domain of its repressor (R1-69) and that of phage lambda (lambda6-85) constitute a group of small, monomeric, single-domain folding units consisting of five helices with striking structural similarity. The intrinsic helix stabilities in lambda6-85 have been correlated to its rapid folding behavior, and a residual hydrophobic cluster found in R1-69 in 7 M urea has been proposed as a folding initiation site. To understand the early events in the folding of 434 Cro, and for comparison with R1-69 and lambda6-85, we examined the conformational behavior of five peptides covering the entire 434 Cro sequence in water, 40% (by volume) TFE/water, and 7 M urea solutions using CD and NMR. Each peptide corresponds to a helix and adjacent residues as identified in the native 434 Cro NMR and crystal structures. All are soluble and monomeric in the solution conditions examined except for the peptide corresponding to the 434 Cro helix 4, which has low water solubility. Helix formation is observed for the 434 Cro helix 1 and helix 2 peptides in water, for all the peptides in 40% TFE and for none in 7 M urea. NMR data indicate that the helix limits in the peptides are similar to those in the native protein helices. The number of side-chain NOEs in water and TFE correlates with the helix content, and essentially none are observed in 7 M urea for any peptide, except that for helix 5, where a hydrophobic cluster may be present. The low intrinsic folding propensities of the five helices could account for the observed stability and folding behavior of 434 Cro and is, at least qualitatively, in accord with the results of the recently described diffusion-collision model incorporating intrinsic helix propensities.

Full Text

The Full Text of this article is available as a PDF (759.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert J. S., Hamilton A. D. Stabilization of helical domains in short peptides using hydrophobic interactions. Biochemistry. 1995 Jan 24;34(3):984–990. doi: 10.1021/bi00003a033. [DOI] [PubMed] [Google Scholar]
  2. Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. doi: 10.1016/0079-6107(84)90007-5. [DOI] [PubMed] [Google Scholar]
  3. Baldwin R. L. Alpha-helix formation by peptides of defined sequence. Biophys Chem. 1995 Jun-Jul;55(1-2):127–135. doi: 10.1016/0301-4622(94)00146-b. [DOI] [PubMed] [Google Scholar]
  4. Baldwin R. L. How does protein folding get started? Trends Biochem Sci. 1989 Jul;14(7):291–294. doi: 10.1016/0968-0004(89)90067-4. [DOI] [PubMed] [Google Scholar]
  5. Barlow D. J., Thornton J. M. Helix geometry in proteins. J Mol Biol. 1988 Jun 5;201(3):601–619. doi: 10.1016/0022-2836(88)90641-9. [DOI] [PubMed] [Google Scholar]
  6. Brandts J. F., Kaplan L. J. Derivative sspectroscopy applied to tyrosyl chromophores. Studies on ribonuclease, lima bean inhibitors, insulin, and pancreatic trypsin inhibitor. Biochemistry. 1973 May 8;12(10):2011–2024. doi: 10.1021/bi00734a027. [DOI] [PubMed] [Google Scholar]
  7. Bryngelson J. D., Onuchic J. N., Socci N. D., Wolynes P. G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins. 1995 Mar;21(3):167–195. doi: 10.1002/prot.340210302. [DOI] [PubMed] [Google Scholar]
  8. Burton R. E., Huang G. S., Daugherty M. A., Calderone T. L., Oas T. G. The energy landscape of a fast-folding protein mapped by Ala-->Gly substitutions. Nat Struct Biol. 1997 Apr;4(4):305–310. doi: 10.1038/nsb0497-305. [DOI] [PubMed] [Google Scholar]
  9. Burton R. E., Huang G. S., Daugherty M. A., Fullbright P. W., Oas T. G. Microsecond protein folding through a compact transition state. J Mol Biol. 1996 Oct 25;263(2):311–322. doi: 10.1006/jmbi.1996.0577. [DOI] [PubMed] [Google Scholar]
  10. Burton R. E., Myers J. K., Oas T. G. Protein folding dynamics: quantitative comparison between theory and experiment. Biochemistry. 1998 Apr 21;37(16):5337–5343. doi: 10.1021/bi980245c. [DOI] [PubMed] [Google Scholar]
  11. Chakrabartty A., Kortemme T., Baldwin R. L. Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci. 1994 May;3(5):843–852. doi: 10.1002/pro.5560030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chakrabartty A., Kortemme T., Padmanabhan S., Baldwin R. L. Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry. 1993 Jun 1;32(21):5560–5565. doi: 10.1021/bi00072a010. [DOI] [PubMed] [Google Scholar]
  13. Dill K. A., Chan H. S. From Levinthal to pathways to funnels. Nat Struct Biol. 1997 Jan;4(1):10–19. doi: 10.1038/nsb0197-10. [DOI] [PubMed] [Google Scholar]
  14. Doig A. J., Baldwin R. L. N- and C-capping preferences for all 20 amino acids in alpha-helical peptides. Protein Sci. 1995 Jul;4(7):1325–1336. doi: 10.1002/pro.5560040708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dyson H. J., Merutka G., Waltho J. P., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. I. Myohemerythrin. J Mol Biol. 1992 Aug 5;226(3):795–817. doi: 10.1016/0022-2836(92)90633-u. [DOI] [PubMed] [Google Scholar]
  16. Dyson H. J., Wright P. E. Defining solution conformations of small linear peptides. Annu Rev Biophys Biophys Chem. 1991;20:519–538. doi: 10.1146/annurev.bb.20.060191.002511. [DOI] [PubMed] [Google Scholar]
  17. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  18. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  19. HOLZWARTH G., DOTY P. THE ULTRAVIOLET CIRCULAR DICHROISM OF POLYPEPTIDES. J Am Chem Soc. 1965 Jan 20;87:218–228. doi: 10.1021/ja01080a015. [DOI] [PubMed] [Google Scholar]
  20. Hamada D., Kuroda Y., Tanaka T., Goto Y. High helical propensity of the peptide fragments derived from beta-lactoglobulin, a predominantly beta-sheet protein. J Mol Biol. 1995 Dec 8;254(4):737–746. doi: 10.1006/jmbi.1995.0651. [DOI] [PubMed] [Google Scholar]
  21. Hirota N., Mizuno K., Goto Y. Group additive contributions to the alcohol-induced alpha-helix formation of melittin: implication for the mechanism of the alcohol effects on proteins. J Mol Biol. 1998 Jan 16;275(2):365–378. doi: 10.1006/jmbi.1997.1468. [DOI] [PubMed] [Google Scholar]
  22. Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5131–5135. doi: 10.1073/pnas.82.15.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Huang G. S., Oas T. G. Structure and stability of monomeric lambda repressor: NMR evidence for two-state folding. Biochemistry. 1995 Mar 28;34(12):3884–3892. doi: 10.1021/bi00012a003. [DOI] [PubMed] [Google Scholar]
  24. Huang G. S., Oas T. G. Submillisecond folding of monomeric lambda repressor. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6878–6882. doi: 10.1073/pnas.92.15.6878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Itzhaki L. S., Neira J. L., Ruiz-Sanz J., de Prat Gay G., Fersht A. R. Search for nucleation sites in smaller fragments of chymotrypsin inhibitor 2. J Mol Biol. 1995 Nov 24;254(2):289–304. doi: 10.1006/jmbi.1995.0617. [DOI] [PubMed] [Google Scholar]
  26. Jackson S. E. How do small single-domain proteins fold? Fold Des. 1998;3(4):R81–R91. doi: 10.1016/S1359-0278(98)00033-9. [DOI] [PubMed] [Google Scholar]
  27. Jiménez M. A., Blanco F. J., Rico M., Santoro J., Herranz J., Nieto J. L. Periodic properties of proton conformational shifts in isolated protein helices. An experimental study. Eur J Biochem. 1992 Jul 1;207(1):39–49. doi: 10.1111/j.1432-1033.1992.tb17017.x. [DOI] [PubMed] [Google Scholar]
  28. Kemmink J., Creighton T. E. Effects of trifluoroethanol on the conformations of peptides representing the entire sequence of bovine pancreatic trypsin inhibitor. Biochemistry. 1995 Oct 3;34(39):12630–12635. doi: 10.1021/bi00039a019. [DOI] [PubMed] [Google Scholar]
  29. Kemmink J., Creighton T. E. The physical properties of local interactions of tyrosine residues in peptides and unfolded proteins. J Mol Biol. 1995 Jan 20;245(3):251–260. doi: 10.1006/jmbi.1994.0021. [DOI] [PubMed] [Google Scholar]
  30. Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
  31. Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
  32. Lehrman S. R., Tuls J. L., Lund M. Peptide alpha-helicity in aqueous trifluoroethanol: correlations with predicted alpha-helicity and the secondary structure of the corresponding regions of bovine growth hormone. Biochemistry. 1990 Jun 12;29(23):5590–5596. doi: 10.1021/bi00475a025. [DOI] [PubMed] [Google Scholar]
  33. Lumb K. J., Kim P. S. Formation of a hydrophobic cluster in denatured bovine pancreatic trypsin inhibitor. J Mol Biol. 1994 Feb 18;236(2):412–420. doi: 10.1006/jmbi.1994.1153. [DOI] [PubMed] [Google Scholar]
  34. Lyu P. C., Wemmer D. E., Zhou H. X., Pinker R. J., Kallenbach N. R. Capping interactions in isolated alpha helices: position-dependent substitution effects and structure of a serine-capped peptide helix. Biochemistry. 1993 Jan 19;32(2):421–425. doi: 10.1021/bi00053a006. [DOI] [PubMed] [Google Scholar]
  35. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  36. Marqusee S., Sauer R. T. Contributions of a hydrogen bond/salt bridge network to the stability of secondary and tertiary structure in lambda repressor. Protein Sci. 1994 Dec;3(12):2217–2225. doi: 10.1002/pro.5560031207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Merutka G., Dyson H. J., Wright P. E. 'Random coil' 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. J Biomol NMR. 1995 Jan;5(1):14–24. doi: 10.1007/BF00227466. [DOI] [PubMed] [Google Scholar]
  38. Mondragón A., Subbiah S., Almo S. C., Drottar M., Harrison S. C. Structure of the amino-terminal domain of phage 434 repressor at 2.0 A resolution. J Mol Biol. 1989 Jan 5;205(1):189–200. doi: 10.1016/0022-2836(89)90375-6. [DOI] [PubMed] [Google Scholar]
  39. Mondragón A., Wolberger C., Harrison S. C. Structure of phage 434 Cro protein at 2.35 A resolution. J Mol Biol. 1989 Jan 5;205(1):179–188. doi: 10.1016/0022-2836(89)90374-4. [DOI] [PubMed] [Google Scholar]
  40. Muñoz V., Blanco F. J., Serrano L. The hydrophobic-staple motif and a role for loop-residues in alpha-helix stability and protein folding. Nat Struct Biol. 1995 May;2(5):380–385. doi: 10.1038/nsb0595-380. [DOI] [PubMed] [Google Scholar]
  41. Muñoz V., Serrano L. Development of the multiple sequence approximation within the AGADIR model of alpha-helix formation: comparison with Zimm-Bragg and Lifson-Roig formalisms. Biopolymers. 1997 Apr 15;41(5):495–509. doi: 10.1002/(SICI)1097-0282(19970415)41:5<495::AID-BIP2>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  42. Muñoz V., Serrano L., Jiménez M. A., Rico M. Structural analysis of peptides encompassing all alpha-helices of three alpha/beta parallel proteins: Che-Y, flavodoxin and P21-ras: implications for alpha-helix stability and the folding of alpha/beta parallel proteins. J Mol Biol. 1995 Apr 7;247(4):648–669. doi: 10.1016/s0022-2836(05)80145-7. [DOI] [PubMed] [Google Scholar]
  43. Muñoz V., Serrano L. Local versus nonlocal interactions in protein folding and stability--an experimentalist's point of view. Fold Des. 1996;1(4):R71–R77. doi: 10.1016/S1359-0278(96)00036-3. [DOI] [PubMed] [Google Scholar]
  44. Myers J. K., Pace C. N., Scholtz J. M. Trifluoroethanol effects on helix propensity and electrostatic interactions in the helical peptide from ribonuclease T1. Protein Sci. 1998 Feb;7(2):383–388. doi: 10.1002/pro.5560070219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Nandi P. K., Robinson D. R. Effects of urea and guanidine hydrochloride on peptide and nonpolar groups. Biochemistry. 1984 Dec 18;23(26):6661–6668. doi: 10.1021/bi00321a058. [DOI] [PubMed] [Google Scholar]
  46. Nelson J. W., Kallenbach N. R. Persistence of the alpha-helix stop signal in the S-peptide in trifluoroethanol solutions. Biochemistry. 1989 Jun 13;28(12):5256–5261. doi: 10.1021/bi00438a050. [DOI] [PubMed] [Google Scholar]
  47. Nelson J. W., Kallenbach N. R. Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol. Proteins. 1986 Nov;1(3):211–217. doi: 10.1002/prot.340010303. [DOI] [PubMed] [Google Scholar]
  48. Neri D., Billeter M., Wider G., Wüthrich K. NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science. 1992 Sep 11;257(5076):1559–1563. doi: 10.1126/science.1523410. [DOI] [PubMed] [Google Scholar]
  49. Némethy G., Phillips D. C., Leach S. J., Scheraga H. A. A second right-handed helical structure with the parameters of the Pauling-Corey alpha-helix. Nature. 1967 Apr 22;214(5086):363–365. doi: 10.1038/214363a0. [DOI] [PubMed] [Google Scholar]
  50. Padmanabhan S., Baldwin R. L. Helix-stabilizing interaction between tyrosine and leucine or valine when the spacing is i, i + 4. J Mol Biol. 1994 Sep 2;241(5):706–713. doi: 10.1006/jmbi.1994.1545. [DOI] [PubMed] [Google Scholar]
  51. Padmanabhan S., Baldwin R. L. Tests for helix-stabilizing interactions between various nonpolar side chains in alanine-based peptides. Protein Sci. 1994 Nov;3(11):1992–1997. doi: 10.1002/pro.5560031111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Padmanabhan S., Jiménez M. A., Gonzalez C., Sanz J. M., Giménez-Gallego G., Rico M. Three-dimensional solution structure and stability of phage 434 Cro protein. Biochemistry. 1997 May 27;36(21):6424–6436. doi: 10.1021/bi970085p. [DOI] [PubMed] [Google Scholar]
  53. Padmanabhan S., Jiménez M. A., Laurents D. V., Rico M. Helix-stabilizing nonpolar interactions between tyrosine and leucine in aqueous and TFE solutions: 2D-1H NMR and CD studies in alanine-lysine peptides. Biochemistry. 1998 Dec 8;37(49):17318–17330. doi: 10.1021/bi9813678. [DOI] [PubMed] [Google Scholar]
  54. Plaxco K. W., Simons K. T., Baker D. Contact order, transition state placement and the refolding rates of single domain proteins. J Mol Biol. 1998 Apr 10;277(4):985–994. doi: 10.1006/jmbi.1998.1645. [DOI] [PubMed] [Google Scholar]
  55. Prieto J., Serrano L. C-capping and helix stability: the Pro C-capping motif. J Mol Biol. 1997 Nov 28;274(2):276–288. doi: 10.1006/jmbi.1997.1322. [DOI] [PubMed] [Google Scholar]
  56. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  57. Reymond M. T., Merutka G., Dyson H. J., Wright P. E. Folding propensities of peptide fragments of myoglobin. Protein Sci. 1997 Mar;6(3):706–716. doi: 10.1002/pro.5560060320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  59. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  60. Rico M., Jiménez M. A., González C., De Filippis V., Fontana A. NMR solution structure of the C-terminal fragment 255-316 of thermolysin: a dimer formed by subunits having the native structure. Biochemistry. 1994 Dec 13;33(49):14834–14847. doi: 10.1021/bi00253a023. [DOI] [PubMed] [Google Scholar]
  61. Rizo J., Blanco F. J., Kobe B., Bruch M. D., Gierasch L. M. Conformational behavior of Escherichia coli OmpA signal peptides in membrane mimetic environments. Biochemistry. 1993 May 11;32(18):4881–4894. doi: 10.1021/bi00069a025. [DOI] [PubMed] [Google Scholar]
  62. Rohl C. A., Chakrabartty A., Baldwin R. L. Helix propagation and N-cap propensities of the amino acids measured in alanine-based peptides in 40 volume percent trifluoroethanol. Protein Sci. 1996 Dec;5(12):2623–2637. doi: 10.1002/pro.5560051225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Sancho J., Neira J. L., Fersht A. R. An N-terminal fragment of barnase has residual helical structure similar to that in a refolding intermediate. J Mol Biol. 1992 Apr 5;224(3):749–758. doi: 10.1016/0022-2836(92)90559-3. [DOI] [PubMed] [Google Scholar]
  64. Scholtz J. M., Barrick D., York E. J., Stewart J. M., Baldwin R. L. Urea unfolding of peptide helices as a model for interpreting protein unfolding. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):185–189. doi: 10.1073/pnas.92.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Scholtz J. M., Qian H., Robbins V. H., Baldwin R. L. The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide. Biochemistry. 1993 Sep 21;32(37):9668–9676. doi: 10.1021/bi00088a019. [DOI] [PubMed] [Google Scholar]
  66. Segawa S., Fukuno T., Fujiwara K., Noda Y. Local structures in unfolded lysozyme and correlation with secondary structures in the native conformation: helix-forming or -breaking propensity of peptide segments. Biopolymers. 1991 Apr;31(5):497–509. doi: 10.1002/bip.360310505. [DOI] [PubMed] [Google Scholar]
  67. Smith L. J., Bolin K. A., Schwalbe H., MacArthur M. W., Thornton J. M., Dobson C. M. Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. J Mol Biol. 1996 Jan 26;255(3):494–506. doi: 10.1006/jmbi.1996.0041. [DOI] [PubMed] [Google Scholar]
  68. Spector S., Kuhlman B., Fairman R., Wong E., Boice J. A., Raleigh D. P. Cooperative folding of a protein mini domain: the peripheral subunit-binding domain of the pyruvate dehydrogenase multienzyme complex. J Mol Biol. 1998 Feb 20;276(2):479–489. doi: 10.1006/jmbi.1997.1522. [DOI] [PubMed] [Google Scholar]
  69. Stapley B. J., Rohl C. A., Doig A. J. Addition of side chain interactions to modified Lifson-Roig helix-coil theory: application to energetics of phenylalanine-methionine interactions. Protein Sci. 1995 Nov;4(11):2383–2391. doi: 10.1002/pro.5560041117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Sönnichsen F. D., Van Eyk J. E., Hodges R. S., Sykes B. D. Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry. 1992 Sep 22;31(37):8790–8798. doi: 10.1021/bi00152a015. [DOI] [PubMed] [Google Scholar]
  71. Thompson P. A., Eaton W. A., Hofrichter J. Laser temperature jump study of the helix<==>coil kinetics of an alanine peptide interpreted with a 'kinetic zipper' model. Biochemistry. 1997 Jul 29;36(30):9200–9210. doi: 10.1021/bi9704764. [DOI] [PubMed] [Google Scholar]
  72. Viguera A. R., Serrano L. Side-chain interactions between sulfur-containing amino acids and phenylalanine in alpha-helices. Biochemistry. 1995 Jul 11;34(27):8771–8779. doi: 10.1021/bi00027a028. [DOI] [PubMed] [Google Scholar]
  73. Viguera A. R., Villegas V., Avilés F. X., Serrano L. Favourable native-like helical local interactions can accelerate protein folding. Fold Des. 1997;2(1):23–33. doi: 10.1016/S1359-0278(97)00003-5. [DOI] [PubMed] [Google Scholar]
  74. Villegas V, V, Viguera AR, Aviles FX, Serrano L. Stabilization of proteins by rational design of alpha-helix stability using helix/coil transition theory. Fold Des. 1995;1(1):29–34. [PubMed] [Google Scholar]
  75. Williams S., Causgrove T. P., Gilmanshin R., Fang K. S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry. 1996 Jan 23;35(3):691–697. doi: 10.1021/bi952217p. [DOI] [PubMed] [Google Scholar]
  76. Wishart D. S., Bigam C. G., Holm A., Hodges R. S., Sykes B. D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67–81. doi: 10.1007/BF00227471. [DOI] [PubMed] [Google Scholar]
  77. Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
  78. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
  79. Wolynes P. G., Onuchic J. N., Thirumalai D. Navigating the folding routes. Science. 1995 Mar 17;267(5204):1619–1620. doi: 10.1126/science.7886447. [DOI] [PubMed] [Google Scholar]
  80. Yang J. J., Buck M., Pitkeathly M., Kotik M., Haynie D. T., Dobson C. M., Radford S. E. Conformational properties of four peptides spanning the sequence of hen lysozyme. J Mol Biol. 1995 Sep 29;252(4):483–491. doi: 10.1006/jmbi.1995.0513. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES