Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jan;9(1):95–103. doi: 10.1110/ps.9.1.95

Dynamics of the Hck-SH3 domain: comparison of experiment with multiple molecular dynamics simulations.

D A Horita 1, W Zhang 1, T E Smithgall 1, W H Gmeiner 1, R A Byrd 1
PMCID: PMC2144440  PMID: 10739251

Abstract

Molecular dynamics calculations provide a method by which the dynamic properties of molecules can be explored over timescales and at a level of detail that cannot be obtained experimentally from NMR or X-ray analyses. Recent work (Philippopoulos M, Mandel AM, Palmer AG III, Lim C, 1997, Proteins 28:481-493) has indicated that the accuracy of these simulations is high, as measured by the correspondence of parameters extracted from these calculations to those determined through experimental means. Here, we investigate the dynamic behavior of the Src homology 3 (SH3) domain of hematopoietic cell kinase (Hck) via 5N backbone relaxation NMR studies and a set of four independent 4 ns solvated molecular dynamics calculations. We also find that molecular dynamics simulations accurately reproduce fast motion dynamics as estimated from generalized order parameter (S2) analysis for regions of the protein that have experimentally well-defined coordinates (i.e., stable secondary structural elements). However, for regions where the coordinates are not well defined, as indicated by high local root-mean-square deviations among NMR-determined structural family members or high B-factors/low electron density in X-ray crystallography determined structures, the parameters calculated from a short to moderate length (less than 5-10 ns) molecular dynamics trajectory are dependent on the particular coordinates chosen as a starting point for the simulation.

Full Text

The Full Text of this article is available as a PDF (998.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews B. K., Romo T., Clarage J. B., Pettitt B. M., Phillips G. N., Jr Characterizing global substates of myoglobin. Structure. 1998 May 15;6(5):587–594. doi: 10.1016/s0969-2126(98)00060-4. [DOI] [PubMed] [Google Scholar]
  2. Arold S., O'Brien R., Franken P., Strub M. P., Hoh F., Dumas C., Ladbury J. E. RT loop flexibility enhances the specificity of Src family SH3 domains for HIV-1 Nef. Biochemistry. 1998 Oct 20;37(42):14683–14691. doi: 10.1021/bi980989q. [DOI] [PubMed] [Google Scholar]
  3. Chandrasekhar I., Clore G. M., Szabo A., Gronenborn A. M., Brooks B. R. A 500 ps molecular dynamics simulation study of interleukin-1 beta in water. Correlation with nuclear magnetic resonance spectroscopy and crystallography. J Mol Biol. 1992 Jul 5;226(1):239–250. doi: 10.1016/0022-2836(92)90136-8. [DOI] [PubMed] [Google Scholar]
  4. Cohen G. B., Ren R., Baltimore D. Modular binding domains in signal transduction proteins. Cell. 1995 Jan 27;80(2):237–248. doi: 10.1016/0092-8674(95)90406-9. [DOI] [PubMed] [Google Scholar]
  5. Cooper A., Dryden D. T. Allostery without conformational change. A plausible model. Eur Biophys J. 1984;11(2):103–109. doi: 10.1007/BF00276625. [DOI] [PubMed] [Google Scholar]
  6. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  7. Duan Y., Kollman P. A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science. 1998 Oct 23;282(5389):740–744. doi: 10.1126/science.282.5389.740. [DOI] [PubMed] [Google Scholar]
  8. Farrow N. A., Muhandiram R., Singer A. U., Pascal S. M., Kay C. M., Gish G., Shoelson S. E., Pawson T., Forman-Kay J. D., Kay L. E. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry. 1994 May 17;33(19):5984–6003. doi: 10.1021/bi00185a040. [DOI] [PubMed] [Google Scholar]
  9. Horita D. A., Baldisseri D. M., Zhang W., Altieri A. S., Smithgall T. E., Gmeiner W. H., Byrd R. A. Solution structure of the human Hck SH3 domain and identification of its ligand binding site. J Mol Biol. 1998 Apr 24;278(1):253–265. doi: 10.1006/jmbi.1998.1690. [DOI] [PubMed] [Google Scholar]
  10. Karplus M., McCammon J. A. Dynamics of proteins: elements and function. Annu Rev Biochem. 1983;52:263–300. doi: 10.1146/annurev.bi.52.070183.001403. [DOI] [PubMed] [Google Scholar]
  11. Mandel A. M., Akke M., Palmer A. G., 3rd Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol. 1995 Feb 10;246(1):144–163. doi: 10.1006/jmbi.1994.0073. [DOI] [PubMed] [Google Scholar]
  12. Palmer A. G., 3rd Probing molecular motion by NMR. Curr Opin Struct Biol. 1997 Oct;7(5):732–737. doi: 10.1016/s0959-440x(97)80085-1. [DOI] [PubMed] [Google Scholar]
  13. Philippopoulos M., Lim C. Molecular dynamics simulation of E. coli ribonuclease H1 in solution: correlation with NMR and X-ray data and insights into biological function. J Mol Biol. 1995 Dec 8;254(4):771–792. doi: 10.1006/jmbi.1995.0654. [DOI] [PubMed] [Google Scholar]
  14. Philippopoulos M., Mandel A. M., Palmer A. G., 3rd, Lim C. Accuracy and precision of NMR relaxation experiments and MD simulations for characterizing protein dynamics. Proteins. 1997 Aug;28(4):481–493. [PubMed] [Google Scholar]
  15. Sicheri F., Moarefi I., Kuriyan J. Crystal structure of the Src family tyrosine kinase Hck. Nature. 1997 Feb 13;385(6617):602–609. doi: 10.1038/385602a0. [DOI] [PubMed] [Google Scholar]
  16. Smith P. E., van Schaik R. C., Szyperski T., Wüthrich K., van Gunsteren W. F. Internal mobility of the basic pancreatic trypsin inhibitor in solution: a comparison of NMR spin relaxation measurements and molecular dynamics simulations. J Mol Biol. 1995 Feb 17;246(2):356–365. doi: 10.1006/jmbi.1994.0090. [DOI] [PubMed] [Google Scholar]
  17. Spolar R. S., Record M. T., Jr Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994 Feb 11;263(5148):777–784. doi: 10.1126/science.8303294. [DOI] [PubMed] [Google Scholar]
  18. Steinbach P. J., Brooks B. R. Protein hydration elucidated by molecular dynamics simulation. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9135–9139. doi: 10.1073/pnas.90.19.9135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weber G. Energetics of ligand binding to proteins. Adv Protein Chem. 1975;29:1–83. doi: 10.1016/s0065-3233(08)60410-6. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES