Abstract
Parvalbumins constitute a class of calcium-binding proteins characterized by the presence of several helix-loop-helix (EF-hand) motifs. In a previous study (Revett SP, King G, Shabanowitz J, Hunt DF, Hartman KL, Laue TM, Nelson DJ, 1997, Protein Sci 7:2397-2408), we presented the sequence of the major parvalbumin isoform from the silver hake (Merluccius bilinearis) and presented spectroscopic and structural information on the excised "EF-hand" portion of the protein. In this study, the X-ray crystal structure of the silver hake major parvalbumin has been determined to high resolution, in the frozen state, using the molecular replacement method with the carp parvalbumin structure as a starting model. The crystals are orthorhombic, space group C2221, with a = 75.7 A, b = 80.7 A, and c = 42.1 A. Data were collected from a single crystal grown in 15% glycerol, which served as a cryoprotectant for flash freezing at -188 degrees C. The structure refined to a conventional R-value of 21% (free R 25%) for observed reflections in the range 8 to 1.65 A [1 > 2sigma(I)]. The refined model includes an acetylated amino terminus, 108 residues (characteristic of a beta parvalbumin lineage), 2 calcium ions, and 114 water molecules per protein molecule. The resulting structure was used in molecular dynamics (MD) simulations focused primarily on the dynamics of the ligands coordinating the Ca2+ ions in the CD and EF sites. MD simulations were performed on both the fully Ca2+ loaded protein and on a Ca2+ deficient variant, with Ca2+ only in the CD site. There was substantial agreement between the MD and X-ray results in addressing the issue of mobility of key residues in the calcium-binding sites, especially with regard to the side chain of Ser55 in the CD site and Asp92 in the EF site.
Full Text
The Full Text of this article is available as a PDF (3.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed F. R., Przybylska M., Rose D. R., Birnbaum G. I., Pippy M. E., MacManus J. P. Structure of oncomodulin refined at 1.85 A resolution. An example of extensive molecular aggregation via Ca2+. J Mol Biol. 1990 Nov 5;216(1):127–140. doi: 10.1016/S0022-2836(05)80065-8. [DOI] [PubMed] [Google Scholar]
- Andressen C., Gotzos V., Berchtold M. W., Pauls T. L., Schwaller B., Fellay B., Celio M. R. Changes in shape and motility of cells transfected with parvalbumin cDNA. Exp Cell Res. 1995 Aug;219(2):420–426. doi: 10.1006/excr.1995.1248. [DOI] [PubMed] [Google Scholar]
- Baker E. N., Hubbard R. E. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. doi: 10.1016/0079-6107(84)90007-5. [DOI] [PubMed] [Google Scholar]
- Baldellon C., Alattia J. R., Strub M. P., Pauls T., Berchtold M. W., Cavé A., Padilla A. 15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared to those of other EF-hand proteins. Biochemistry. 1998 Jul 14;37(28):9964–9975. doi: 10.1021/bi980334p. [DOI] [PubMed] [Google Scholar]
- Blancuzzi Y., Padilla A., Parello J., Cavé A. Symmetrical rearrangement of the cation-binding sites of parvalbumin upon Ca2+/Mg2+ exchange. A study by 1H 2D NMR. Biochemistry. 1993 Feb 9;32(5):1302–1309. doi: 10.1021/bi00056a015. [DOI] [PubMed] [Google Scholar]
- Brewer J. M., Wunderlich J. K., Kim D. H., Carr M. Y., Beach G. G., Ragland W. L. Avian thymic hormone (ATH) is a parvalbumin. Biochem Biophys Res Commun. 1989 May 15;160(3):1155–1161. doi: 10.1016/s0006-291x(89)80124-x. [DOI] [PubMed] [Google Scholar]
- Chard P. S., Bleakman D., Christakos S., Fullmer C. S., Miller R. J. Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J Physiol. 1993 Dec;472:341–357. doi: 10.1113/jphysiol.1993.sp019950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Declercq J. P., Tinant B., Parello J., Etienne G., Huber R. Crystal structure determination and refinement of pike 4.10 parvalbumin (minor component from Esox lucius). J Mol Biol. 1988 Jul 20;202(2):349–353. doi: 10.1016/0022-2836(88)90464-0. [DOI] [PubMed] [Google Scholar]
- Declercq J. P., Tinant B., Parello J., Rambaud J. Ionic interactions with parvalbumins. Crystal structure determination of pike 4.10 parvalbumin in four different ionic environments. J Mol Biol. 1991 Aug 20;220(4):1017–1039. doi: 10.1016/0022-2836(91)90369-h. [DOI] [PubMed] [Google Scholar]
- Drakenberg T., Swärd M., Cavé A., Parello J. Metal-ion binding to parvalbumin. A 113Cd-n.m.r. study of the binding of different lanthanide ions. Biochem J. 1985 May 1;227(3):711–717. doi: 10.1042/bj2270711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Endo T., Takazawa K., Onaya T. Parvalbumin exists in rat endocrine glands. Endocrinology. 1985 Aug;117(2):527–531. doi: 10.1210/endo-117-2-527. [DOI] [PubMed] [Google Scholar]
- Föhr U. G., Weber B. R., Müntener M., Staudenmann W., Hughes G. J., Frutiger S., Banville D., Schäfer B. W., Heizmann C. W. Human alpha and beta parvalbumins. Structure and tissue-specific expression. Eur J Biochem. 1993 Aug 1;215(3):719–727. doi: 10.1111/j.1432-1033.1993.tb18084.x. [DOI] [PubMed] [Google Scholar]
- Haiech J., Derancourt J., Pechère J. F., Demaille J. G. Magnesium and calcium binding to parvalbumins: evidence for differences between parvalbumins and an explanation of their relaxing function. Biochemistry. 1979 Jun 26;18(13):2752–2758. doi: 10.1021/bi00580a010. [DOI] [PubMed] [Google Scholar]
- Haiech J., Derancourt J., Pechère J. F., Demaille J. G. Magnesium and calcium binding to parvalbumins: evidence for differences between parvalbumins and an explanation of their relaxing function. Biochemistry. 1979 Jun 26;18(13):2752–2758. doi: 10.1021/bi00580a010. [DOI] [PubMed] [Google Scholar]
- Herzberg O., James M. N. Common structural framework of the two Ca2+/Mg2+ binding loops of troponin C and other Ca2+ binding proteins. Biochemistry. 1985 Sep 24;24(20):5298–5302. doi: 10.1021/bi00341a004. [DOI] [PubMed] [Google Scholar]
- Isenberg G., Goldmann W. H. Peptide-specific antibodies localize the major lipid binding sites of talin dimers to oppositely arranged N-terminal 47 kDa subdomains. FEBS Lett. 1998 Apr 17;426(2):165–170. doi: 10.1016/s0014-5793(98)00336-6. [DOI] [PubMed] [Google Scholar]
- Jiang Y., Johnson J. D., Rall J. A. Parvalbumin relaxes frog skeletal muscle when sarcoplasmic reticulum Ca(2+)-ATPase is inhibited. Am J Physiol. 1996 Feb;270(2 Pt 1):C411–C417. doi: 10.1152/ajpcell.1996.270.2.C411. [DOI] [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Kretsinger R. H. Calcium coordination and the calmodulin fold: divergent versus convergent evolution. Cold Spring Harb Symp Quant Biol. 1987;52:499–510. doi: 10.1101/sqb.1987.052.01.057. [DOI] [PubMed] [Google Scholar]
- Kretsinger R. H. Structure and evolution of calcium-modulated proteins. CRC Crit Rev Biochem. 1980;8(2):119–174. doi: 10.3109/10409238009105467. [DOI] [PubMed] [Google Scholar]
- Kumar V. D., Lee L., Edwards B. F. Refined crystal structure of calcium-liganded carp parvalbumin 4.25 at 1.5-A resolution. Biochemistry. 1990 Feb 13;29(6):1404–1412. doi: 10.1021/bi00458a010. [DOI] [PubMed] [Google Scholar]
- Kumar V. D., Lee L., Edwards B. F. Refined crystal structure of ytterbium-substituted carp parvalbumin 4.25 at 1.5 A, and its comparison with the native and cadmium-substituted structures. FEBS Lett. 1991 Jun 3;283(2):311–316. doi: 10.1016/0014-5793(91)80616-b. [DOI] [PubMed] [Google Scholar]
- Kägi U., Berchtold M. W., Heizmann C. W. Ca2+-binding parvalbumin in rat testis. Characterization, localization, and expression during development. J Biol Chem. 1987 May 25;262(15):7314–7320. [PubMed] [Google Scholar]
- Laney E. L., Shabanowitz J., King G., Hunt D. F., Nelson D. J. The isolation of parvalbumin isoforms from the tail muscle of the American alligator (Alligator mississipiensis). J Inorg Biochem. 1997 Apr;66(1):67–76. doi: 10.1016/s0162-0134(96)00187-0. [DOI] [PubMed] [Google Scholar]
- MacManus J. P., Watson D. C., Yaguchi M. Rat skin calcium-binding protein is parvalbumin. Biochem J. 1985 Jul 1;229(1):39–45. doi: 10.1042/bj2290039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson D. J., Miller T. L., Martin R. B. Non-cooperative Ca(II) removal and terbium(III) substitution in carp muscle calcium binding parvalbumin. Bioinorg Chem. 1977;7(4):325–334. doi: 10.1016/s0006-3061(00)81031-5. [DOI] [PubMed] [Google Scholar]
- Padilla A., Cavé A., Parello J. Two-dimensional 1H nuclear magnetic resonance study of pike pI 5.0 parvalbumin (Esox lucius). Sequential resonance assignments and folding of the polypeptide chain. J Mol Biol. 1988 Dec 20;204(4):995–1017. doi: 10.1016/0022-2836(88)90057-5. [DOI] [PubMed] [Google Scholar]
- Pauls T. L., Cox J. A., Berchtold M. W. The Ca2+(-)binding proteins parvalbumin and oncomodulin and their genes: new structural and functional findings. Biochim Biophys Acta. 1996 Apr 10;1306(1):39–54. doi: 10.1016/0167-4781(95)00221-9. [DOI] [PubMed] [Google Scholar]
- Persechini A., Moncrief N. D., Kretsinger R. H. The EF-hand family of calcium-modulated proteins. Trends Neurosci. 1989 Nov;12(11):462–467. doi: 10.1016/0166-2236(89)90097-0. [DOI] [PubMed] [Google Scholar]
- Pfyffer G. E., Faivre-Bauman A., Tixier-Vidal A., Norman A. W., Heizmann C. W. Developmental and functional studies of parvalbumin and calbindin D28K in hypothalamic neurons grown in serum-free medium. J Neurochem. 1987 Aug;49(2):442–451. doi: 10.1111/j.1471-4159.1987.tb02885.x. [DOI] [PubMed] [Google Scholar]
- Rasmussen C. D., Means A. R. The presence of parvalbumin in a nonmuscle cell line attenuates progression through mitosis. Mol Endocrinol. 1989 Mar;3(3):588–596. doi: 10.1210/mend-3-3-588. [DOI] [PubMed] [Google Scholar]
- Rees D. C., Lewis M., Lipscomb W. N. Refined crystal structure of carboxypeptidase A at 1.54 A resolution. J Mol Biol. 1983 Aug 5;168(2):367–387. doi: 10.1016/s0022-2836(83)80024-2. [DOI] [PubMed] [Google Scholar]
- Revett S. P., King G., Shabanowitz J., Hunt D. F., Hartman K. L., Laue T. M., Nelson D. J. Characterization of a helix-loop-helix (EF hand) motif of silver hake parvalbumin isoform B. Protein Sci. 1997 Nov;6(11):2397–2408. doi: 10.1002/pro.5560061113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roquet F., Declercq J. P., Tinant B., Rambaud J., Parello J. Crystal structure of the unique parvalbumin component from muscle of the leopard shark (Triakis semifasciata). The first X-ray study of an alpha-parvalbumin. J Mol Biol. 1992 Feb 5;223(3):705–720. doi: 10.1016/0022-2836(92)90985-s. [DOI] [PubMed] [Google Scholar]
- Strynadka N. C., James M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–998. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]
- Swain A. L., Kretsinger R. H., Amma E. L. Restrained least squares refinement of native (calcium) and cadmium-substituted carp parvalbumin using X-ray crystallographic data at 1.6-A resolution. J Biol Chem. 1989 Oct 5;264(28):16620–16628. [PubMed] [Google Scholar]