Abstract
Inspection of high resolution three-dimensional (3D) structures from the protein database reveals an increasing number of cis-Xaa-Pro and cis-Xaa-Yaa peptide bonds. However, we are still far from being able to predict whether these bonds will remain cis upon single-site substitution of Pro or Yaa and/or cleavage of a peptide bond close to it in the sequence. We have chosen oxidized Escherichia coli thioredoxin (Trx), a member of the Trx superfamily with a single alpha/beta domain and cis P76 to determine the effect of single-site substitution and/or cleavage on this isomer. Standard two-dimensional (2D) NMR analysis were performed on cleaved Trx (1-73/74-108) and its P76A variant. Analysis of the NOE connectivities indicates remarkable similarity between the secondary and supersecondary structure of the noncovalent complexes and Trx. Analysis of the 2D version of the HCCH-TOCSY and HMQC-NOESY-HMQC and 13C-filtered HMQC-NOESY spectra of cleaved Trx with uniformly 13C-labeled 175 and P76 shows surprising conservation of both cis P76 and packing of 175 against W31. A similar NMR analysis of its P76A variant provides no evidence for cis A76 and shows only subtle local changes in both the packing of 175 and the interstrand connectivities between its most protected hydrophobic strands (beta2 and beta4). Indeed, a molecular simulation model for the trans P76A variant of Trx shows only subtle local changes around the substitution site. In conclusion, cleavage of R73 is insufficient to provoke cis/trans isomerization of P76, but cleavage and single-site substitution (P76A) favors the trans isomer.
Full Text
The Full Text of this article is available as a PDF (888.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chaffotte A. F., Li J. H., Georgescu R. E., Goldberg M. E., Tasayco M. L. Recognition between disordered states: kinetics of the self-assembly of thioredoxin fragments. Biochemistry. 1997 Dec 23;36(51):16040–16048. doi: 10.1021/bi9708500. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Holmgren A., Wright P. E. Assignment of the proton NMR spectrum of reduced and oxidized thioredoxin: sequence-specific assignments, secondary structure, and global fold. Biochemistry. 1989 Aug 22;28(17):7074–7087. doi: 10.1021/bi00443a044. [DOI] [PubMed] [Google Scholar]
- Evans P. A., Dobson C. M., Kautz R. A., Hatfull G., Fox R. O. Proline isomerism in staphylococcal nuclease characterized by NMR and site-directed mutagenesis. Nature. 1987 Sep 17;329(6136):266–268. doi: 10.1038/329266a0. [DOI] [PubMed] [Google Scholar]
- Georgescu R. E., Braswell E. H., Zhu D., Tasayco M. L. Energetics of assembling an artificial heterodimer with an alpha/beta motif: cleaved versus uncleaved Escherichia coli thioredoxin. Biochemistry. 1999 Oct 5;38(40):13355–13366. doi: 10.1021/bi990498l. [DOI] [PubMed] [Google Scholar]
- Herzberg O., Moult J. Analysis of the steric strain in the polypeptide backbone of protein molecules. Proteins. 1991;11(3):223–229. doi: 10.1002/prot.340110307. [DOI] [PubMed] [Google Scholar]
- Hinck A. P., Eberhardt E. S., Markley J. L. NMR strategy for determining Xaa-Pro peptide bond configurations in proteins: mutants of staphylococcal nuclease with altered configuration at proline-117. Biochemistry. 1993 Nov 9;32(44):11810–11818. doi: 10.1021/bi00095a009. [DOI] [PubMed] [Google Scholar]
- Hodel A., Kautz R. A., Adelman D. M., Fox R. O. The importance of anchorage in determining a strained protein loop conformation. Protein Sci. 1994 Apr;3(4):549–556. doi: 10.1002/pro.5560030403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodel A., Kautz R. A., Jacobs M. D., Fox R. O. Stress and strain in staphylococcal nuclease. Protein Sci. 1993 May;2(5):838–850. doi: 10.1002/pro.5560020513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hynes T. R., Fox R. O. The crystal structure of staphylococcal nuclease refined at 1.7 A resolution. Proteins. 1991;10(2):92–105. doi: 10.1002/prot.340100203. [DOI] [PubMed] [Google Scholar]
- Hynes T. R., Hodel A., Fox R. O. Engineering alternative beta-turn types in staphylococcal nuclease. Biochemistry. 1994 May 3;33(17):5021–5030. doi: 10.1021/bi00183a004. [DOI] [PubMed] [Google Scholar]
- Jabs A., Weiss M. S., Hilgenfeld R. Non-proline cis peptide bonds in proteins. J Mol Biol. 1999 Feb 12;286(1):291–304. doi: 10.1006/jmbi.1998.2459. [DOI] [PubMed] [Google Scholar]
- Jeng M. F., Campbell A. P., Begley T., Holmgren A., Case D. A., Wright P. E., Dyson H. J. High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure. 1994 Sep 15;2(9):853–868. doi: 10.1016/s0969-2126(94)00086-7. [DOI] [PubMed] [Google Scholar]
- Karplus P. A. Experimentally observed conformation-dependent geometry and hidden strain in proteins. Protein Sci. 1996 Jul;5(7):1406–1420. doi: 10.1002/pro.5560050719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katti S. K., LeMaster D. M., Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167–184. doi: 10.1016/0022-2836(90)90313-B. [DOI] [PubMed] [Google Scholar]
- Kelley R. F., Richards F. M. Replacement of proline-76 with alanine eliminates the slowest kinetic phase in thioredoxin folding. Biochemistry. 1987 Oct 20;26(21):6765–6774. doi: 10.1021/bi00395a028. [DOI] [PubMed] [Google Scholar]
- Kördel J., Forsén S., Drakenberg T., Chazin W. J. The rate and structural consequences of proline cis-trans isomerization in calbindin D9k: NMR studies of the minor (cis-Pro43) isoform and the Pro43Gly mutant. Biochemistry. 1990 May 8;29(18):4400–4409. doi: 10.1021/bi00470a020. [DOI] [PubMed] [Google Scholar]
- Langsetmo K., Fuchs J., Woodward C. Escherichia coli thioredoxin folds into two compact forms of different stability to urea denaturation. Biochemistry. 1989 Apr 18;28(8):3211–3220. doi: 10.1021/bi00434a015. [DOI] [PubMed] [Google Scholar]
- Lee W., Revington M. J., Arrowsmith C., Kay L. E. A pulsed field gradient isotope-filtered 3D 13C HMQC-NOESY experiment for extracting intermolecular NOE contacts in molecular complexes. FEBS Lett. 1994 Aug 15;350(1):87–90. doi: 10.1016/0014-5793(94)00740-3. [DOI] [PubMed] [Google Scholar]
- Maki K., Ikura T., Hayano T., Takahashi N., Kuwajima K. Effects of proline mutations on the folding of staphylococcal nuclease. Biochemistry. 1999 Feb 16;38(7):2213–2223. doi: 10.1021/bi981962+. [DOI] [PubMed] [Google Scholar]
- Mayr L. M., Willbold D., Rösch P., Schmid F. X. Generation of a non-prolyl cis peptide bond in ribonuclease T1. J Mol Biol. 1994 Jul 22;240(4):288–293. doi: 10.1006/jmbi.1994.1446. [DOI] [PubMed] [Google Scholar]
- Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
- Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
- Reimer U., Scherer G., Drewello M., Kruber S., Schutkowski M., Fischer G. Side-chain effects on peptidyl-prolyl cis/trans isomerisation. J Mol Biol. 1998 Jun 5;279(2):449–460. doi: 10.1006/jmbi.1998.1770. [DOI] [PubMed] [Google Scholar]
- Ryu K., Lee H., Kim S., Beauchamp J., Tung C. S., Isaacs N. W., Ji I., Ji T. H. Modulation of high affinity hormone binding. Human choriogonadotropin binding to the exodomain of the receptor is influenced by exoloop 2 of the receptor. J Biol Chem. 1998 Mar 13;273(11):6285–6291. doi: 10.1074/jbc.273.11.6285. [DOI] [PubMed] [Google Scholar]
- Schultz D. A., Baldwin R. L. Cis proline mutants of ribonuclease A. I. Thermal stability. Protein Sci. 1992 Jul;1(7):910–916. doi: 10.1002/pro.5560010709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz D. A., Schmid F. X., Baldwin R. L. Cis proline mutants of ribonuclease A. II. Elimination of the slow-folding forms by mutation. Protein Sci. 1992 Jul;1(7):917–924. doi: 10.1002/pro.5560010710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz L. W., Hargraves S. R., Klink T. A., Raines R. T. Structure and stability of the P93G variant of ribonuclease A. Protein Sci. 1998 Jul;7(7):1620–1625. doi: 10.1002/pro.5560070716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Stewart D. E., Sarkar A., Wampler J. E. Occurrence and role of cis peptide bonds in protein structures. J Mol Biol. 1990 Jul 5;214(1):253–260. doi: 10.1016/0022-2836(90)90159-J. [DOI] [PubMed] [Google Scholar]
- Svensson L. A., Thulin E., Forsén S. Proline cis-trans isomers in calbindin D9k observed by X-ray crystallography. J Mol Biol. 1992 Feb 5;223(3):601–606. doi: 10.1016/0022-2836(92)90976-q. [DOI] [PubMed] [Google Scholar]
- Tan Y. J., Oliveberg M., Otzen D. E., Fersht A. R. The rate of isomerisation of peptidyl-proline bonds as a probe for interactions in the physiological denatured state of chymotrypsin inhibitor 2. J Mol Biol. 1997 Jun 20;269(4):611–622. doi: 10.1006/jmbi.1997.1043. [DOI] [PubMed] [Google Scholar]
- Tasayco M. L., Chao K. NMR study of the reconstitution of the beta-sheet of thioredoxin by fragment complementation. Proteins. 1995 May;22(1):41–44. doi: 10.1002/prot.340220106. [DOI] [PubMed] [Google Scholar]
- Tung C. S. A computational approach to modeling nucleic acid hairpin structures. Biophys J. 1997 Feb;72(2 Pt 1):876–885. doi: 10.1016/s0006-3495(97)78722-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tweedy N. B., Nair S. K., Paterno S. A., Fierke C. A., Christianson D. W. Structure and energetics of a non-proline cis-peptidyl linkage in a proline-202-->alanine carbonic anhydrase II variant. Biochemistry. 1993 Oct 19;32(41):10944–10949. doi: 10.1021/bi00092a003. [DOI] [PubMed] [Google Scholar]
- Vanhove M., Raquet X., Palzkill T., Pain R. H., Frère J. M. The rate-limiting step in the folding of the cis-Pro167Thr mutant of TEM-1 beta-lactamase is the trans to cis isomerization of a non-proline peptide bond. Proteins. 1996 May;25(1):104–111. doi: 10.1002/(SICI)1097-0134(199605)25:1<104::AID-PROT8>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
- Walkenhorst W. F., Green S. M., Roder H. Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease. Biochemistry. 1997 May 13;36(19):5795–5805. doi: 10.1021/bi9700476. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
- Wüthrich K., Billeter M., Braun W. Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. J Mol Biol. 1984 Dec 15;180(3):715–740. doi: 10.1016/0022-2836(84)90034-2. [DOI] [PubMed] [Google Scholar]
