Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jan;9(1):37–48. doi: 10.1110/ps.9.1.37

Expression, purification, and structural analysis of the trimeric form of the catalytic domain of the Escherichia coli dihydrolipoamide succinyltransferase.

J E Knapp 1, D Carroll 1, J E Lawson 1, S R Ernst 1, L J Reed 1, M L Hackert 1
PMCID: PMC2144448  PMID: 10739245

Abstract

The dihydrolipoamide succinyltransferase (E2o) component of the alpha-ketoglutarate dehydrogenase complex catalyzes the transfer of a succinyl group from the S-succinyldihydrolipoyl moiety to coenzyme A. E2o is normally a 24-mer, but is found as a trimer when E2o is expressed with a C-terminal [His]6 tag. The crystal structure of the trimeric form of the catalytic domain (CD) of the Escherichia coli E2o has been solved to 3.0 A resolution using the Molecular Replacement method. The refined model contains an intact trimer in the asymmetric unit and has an R-factor of 0.257 (Rfree = 0.286) for 18,699 reflections between 10.0 and 3.0 A resolution. The core of tE2oCD (residues 187-396) superimposes onto that of the cubic E2oCD with an RMS difference of 0.4 A for all main-chain atoms. The C-terminal end of tE2oCD (residues 397-404) rotates by an average of 37 degrees compared to cubic E2oCD, disrupting the normal twofold interface. Despite the alteration of quaternary structure, the active site of tE2oCD shows no significant differences from that of the cubic E2oCD, although several side chains in the active site are more ordered in the trimeric form of E2oCD. Analysis of the available sequence data suggests that the majority of E2 components have active sites that resemble that of E. coli E2oCD. The remaining E2 components can be divided into three groups based on active-site sequence similarity. Analysis of the surface properties of both crystal forms of E. coli E2oCD suggests key residues that may be involved in the protein-protein contacts that occur between the catalytic and lipoyl domains of E2o.

Full Text

The Full Text of this article is available as a PDF (5.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ala' Aldeen D. A., Westphal A. H., De Kok A., Weston V., Atta M. S., Baldwin T. J., Bartley J., Borriello S. P. Cloning, sequencing, characterisation and implications for vaccine design of the novel dihydrolipoyl acetyltransferase of Neisseria meningitidis. J Med Microbiol. 1996 Dec;45(6):419–432. doi: 10.1099/00222615-45-6-419. [DOI] [PubMed] [Google Scholar]
  2. Ali G., Wasco W., Cai X., Szabo P., Sheu K. F., Cooper A. J., Gaston S. M., Gusella J. F., Tanzi R. E., Blass J. P. Isolation, characterization, and mapping of gene encoding dihydrolipoyl succinyltransferase (E2k) of human alpha-ketoglutarate dehydrogenase complex. Somat Cell Mol Genet. 1994 Mar;20(2):99–105. doi: 10.1007/BF02290679. [DOI] [PubMed] [Google Scholar]
  3. Berg A., Vervoort J., de Kok A. Solution structure of the lipoyl domain of the 2-oxoglutarate dehydrogenase complex from Azotobacter vinelandii. J Mol Biol. 1996 Aug 23;261(3):432–442. doi: 10.1006/jmbi.1996.0474. [DOI] [PubMed] [Google Scholar]
  4. Borges A., Hawkins C. F., Packman L. C., Perham R. N. Cloning and sequence analysis of the genes encoding the dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase components of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Eur J Biochem. 1990 Nov 26;194(1):95–102. doi: 10.1111/j.1432-1033.1990.tb19432.x. [DOI] [PubMed] [Google Scholar]
  5. Burns G., Brown T., Hatter K., Sokatch J. R. Comparison of the amino acid sequences of the transacylase components of branched chain oxoacid dehydrogenase of Pseudomonas putida, and the pyruvate and 2-oxoglutarate dehydrogenases of Escherichia coli. Eur J Biochem. 1988 Sep 1;176(1):165–169. doi: 10.1111/j.1432-1033.1988.tb14264.x. [DOI] [PubMed] [Google Scholar]
  6. Carlsson P., Hederstedt L. Genetic characterization of Bacillus subtilis odhA and odhB, encoding 2-oxoglutarate dehydrogenase and dihydrolipoamide transsuccinylase, respectively. J Bacteriol. 1989 Jul;171(7):3667–3672. doi: 10.1128/jb.171.7.3667-3672.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cudney R., Patel S., Weisgraber K., Newhouse Y., McPherson A. Screening and optimization strategies for macromolecular crystal growth. Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):414–423. doi: 10.1107/S0907444994002660. [DOI] [PubMed] [Google Scholar]
  8. Dardel F., Davis A. L., Laue E. D., Perham R. N. Three-dimensional structure of the lipoyl domain from Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex. J Mol Biol. 1993 Feb 20;229(4):1037–1048. doi: 10.1006/jmbi.1993.1103. [DOI] [PubMed] [Google Scholar]
  9. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  10. Gibbs M. R., Moody P. C., Leslie A. G. Crystal structure of the aspartic acid-199----asparagine mutant of chloramphenicol acetyltransferase to 2.35-A resolution: structural consequences of disruption of a buried salt bridge. Biochemistry. 1990 Dec 25;29(51):11261–11265. doi: 10.1021/bi00503a015. [DOI] [PubMed] [Google Scholar]
  11. Green J. D., Laue E. D., Perham R. N., Ali S. T., Guest J. R. Three-dimensional structure of a lipoyl domain from the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. J Mol Biol. 1995 Apr 28;248(2):328–343. doi: 10.1016/s0022-2836(95)80054-9. [DOI] [PubMed] [Google Scholar]
  12. Griffin T. A., Lau K. S., Chuang D. T. Characterization and conservation of the inner E2 core domain structure of branched-chain alpha-keto acid dehydrogenase complex from bovine liver. Construction of a cDNA encoding the entire transacylase (E2b) precursor. J Biol Chem. 1988 Oct 5;263(28):14008–14014. [PubMed] [Google Scholar]
  13. Hanemaaijer R., Janssen A., de Kok A., Veeger C. The dihydrolipoyltransacetylase component of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Molecular cloning and sequence analysis. Eur J Biochem. 1988 Jul 1;174(4):593–599. doi: 10.1111/j.1432-1033.1988.tb14140.x. [DOI] [PubMed] [Google Scholar]
  14. Hein S., Steinbüchel A. Biochemical and molecular characterization of the Alcaligenes eutrophus pyruvate dehydrogenase complex and identification of a new type of dihydrolipoamide dehydrogenase. J Bacteriol. 1994 Jul;176(14):4394–4408. doi: 10.1128/jb.176.14.4394-4408.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hein S., Steinbüchel A. Cloning and characterization of the Alcaligenes eutrophus 2-oxoglutarate dehydrogenase complex. FEMS Microbiol Lett. 1996 Mar 1;136(3):231–238. doi: 10.1111/j.1574-6968.1996.tb08054.x. [DOI] [PubMed] [Google Scholar]
  16. Hendle J., Mattevi A., Westphal A. H., Spee J., de Kok A., Teplyakov A., Hol W. G. Crystallographic and enzymatic investigations on the role of Ser558, His610, and Asn614 in the catalytic mechanism of Azotobacter vinelandii dihydrolipoamide acetyltransferase (E2p). Biochemistry. 1995 Apr 4;34(13):4287–4298. doi: 10.1021/bi00013a018. [DOI] [PubMed] [Google Scholar]
  17. Izard T., Aevarsson A., Allen M. D., Westphal A. H., Perham R. N., de Kok A., Hol W. G. Principles of quasi-equivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1240–1245. doi: 10.1073/pnas.96.4.1240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jiang J. S., Brünger A. T. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J Mol Biol. 1994 Oct 14;243(1):100–115. doi: 10.1006/jmbi.1994.1633. [DOI] [PubMed] [Google Scholar]
  19. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  20. Kalia Y. N., Brocklehurst S. M., Hipps D. S., Appella E., Sakaguchi K., Perham R. N. The high-resolution structure of the peripheral subunit-binding domain of dihydrolipoamide acetyltransferase from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. J Mol Biol. 1993 Mar 5;230(1):323–341. doi: 10.1006/jmbi.1993.1145. [DOI] [PubMed] [Google Scholar]
  21. Kleywegt G. J. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):842–857. doi: 10.1107/S0907444995016477. [DOI] [PubMed] [Google Scholar]
  22. Knapp J. E., Mitchell D. T., Yazdi M. A., Ernst S. R., Reed L. J., Hackert M. L. Crystal structure of the truncated cubic core component of the Escherichia coli 2-oxoglutarate dehydrogenase multienzyme complex. J Mol Biol. 1998 Jul 24;280(4):655–668. doi: 10.1006/jmbi.1998.1924. [DOI] [PubMed] [Google Scholar]
  23. Lau K. S., Chuang J. L., Herring W. J., Danner D. J., Cox R. P., Chuang D. T. The complete cDNA sequence for dihydrolipoyl transacylase (E2) of human branched-chain alpha-keto acid dehydrogenase complex. Biochim Biophys Acta. 1992 Oct 20;1132(3):319–321. doi: 10.1016/0167-4781(92)90169-z. [DOI] [PubMed] [Google Scholar]
  24. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  25. Leslie A. G., Moody P. C., Shaw W. V. Structure of chloramphenicol acetyltransferase at 1.75-A resolution. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4133–4137. doi: 10.1073/pnas.85.12.4133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lewendon A., Murray I. A., Kleanthous C., Cullis P. M., Shaw W. V. Substitutions in the active site of chloramphenicol acetyltransferase: role of a conserved aspartate. Biochemistry. 1988 Sep 20;27(19):7385–7390. doi: 10.1021/bi00419a032. [DOI] [PubMed] [Google Scholar]
  27. Maeng C. Y., Yazdi M. A., Reed L. J. Stoichiometry of binding of mature and truncated forms of the dihydrolipoamide dehydrogenase-binding protein to the dihydrolipoamide acetyltransferase core of the pyruvate dehydrogenase complex from Saccharomyces cerevisiae. Biochemistry. 1996 May 7;35(18):5879–5882. doi: 10.1021/bi9600254. [DOI] [PubMed] [Google Scholar]
  28. Mattevi A., Obmolova G., Kalk K. H., Teplyakov A., Hol W. G. Crystallographic analysis of substrate binding and catalysis in dihydrolipoyl transacetylase (E2p). Biochemistry. 1993 Apr 20;32(15):3887–3901. doi: 10.1021/bi00066a007. [DOI] [PubMed] [Google Scholar]
  29. Mattevi A., Obmolova G., Kalk K. H., Westphal A. H., de Kok A., Hol W. G. Refined crystal structure of the catalytic domain of dihydrolipoyl transacetylase (E2p) from Azotobacter vinelandii at 2.6 A resolution. J Mol Biol. 1993 Apr 20;230(4):1183–1199. doi: 10.1006/jmbi.1993.1235. [DOI] [PubMed] [Google Scholar]
  30. Mattevi A., Obmolova G., Schulze E., Kalk K. H., Westphal A. H., de Kok A., Hol W. G. Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science. 1992 Mar 20;255(5051):1544–1550. doi: 10.1126/science.1549782. [DOI] [PubMed] [Google Scholar]
  31. McPherson A. Current approaches to macromolecular crystallization. Eur J Biochem. 1990 Apr 20;189(1):1–23. doi: 10.1111/j.1432-1033.1990.tb15454.x. [DOI] [PubMed] [Google Scholar]
  32. Nakano K., Matuda S., Sakamoto T., Takase C., Nakagawa S., Ohta S., Ariyama T., Inazawa J., Abe T., Miyata T. Human dihydrolipoamide succinyltransferase: cDNA cloning and localization on chromosome 14q24.2-q24.3. Biochim Biophys Acta. 1993 Dec 14;1216(3):360–368. doi: 10.1016/0167-4781(93)90002-u. [DOI] [PubMed] [Google Scholar]
  33. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  34. Niu X. D., Browning K. S., Behal R. H., Reed L. J. Cloning and nucleotide sequence of the gene for dihydrolipoamide acetyltransferase from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7546–7550. doi: 10.1073/pnas.85.20.7546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Patel M. S., Roche T. E. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990 Nov;4(14):3224–3233. doi: 10.1096/fasebj.4.14.2227213. [DOI] [PubMed] [Google Scholar]
  36. Perham R. N. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry. 1991 Sep 3;30(35):8501–8512. doi: 10.1021/bi00099a001. [DOI] [PubMed] [Google Scholar]
  37. Philipp W. J., Poulet S., Eiglmeier K., Pascopella L., Balasubramanian V., Heym B., Bergh S., Bloom B. R., Jacobs W. R., Jr, Cole S. T. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3132–3137. doi: 10.1073/pnas.93.7.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rae J. L., Cutfield J. F., Lamont I. L. Sequences and expression of pyruvate dehydrogenase genes from Pseudomonas aeruginosa. J Bacteriol. 1997 Jun;179(11):3561–3571. doi: 10.1128/jb.179.11.3561-3571.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Reed L. J., Hackert M. L. Structure-function relationships in dihydrolipoamide acyltransferases. J Biol Chem. 1990 Jun 5;265(16):8971–8974. [PubMed] [Google Scholar]
  40. Repetto B., Tzagoloff A. Structure and regulation of KGD2, the structural gene for yeast dihydrolipoyl transsuccinylase. Mol Cell Biol. 1990 Aug;10(8):4221–4232. doi: 10.1128/mcb.10.8.4221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ricaud P. M., Howard M. J., Roberts E. L., Broadhurst R. W., Perham R. N. Three-dimensional structure of the lipoyl domain from the dihydrolipoyl succinyltransferase component of the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli. J Mol Biol. 1996 Nov 22;264(1):179–190. doi: 10.1006/jmbi.1996.0632. [DOI] [PubMed] [Google Scholar]
  42. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  43. Robien M. A., Clore G. M., Omichinski J. G., Perham R. N., Appella E., Sakaguchi K., Gronenborn A. M. Three-dimensional solution structure of the E3-binding domain of the dihydrolipoamide succinyltransferase core from the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli. Biochemistry. 1992 Apr 7;31(13):3463–3471. doi: 10.1021/bi00128a021. [DOI] [PubMed] [Google Scholar]
  44. Schuler G. D., Altschul S. F., Lipman D. J. A workbench for multiple alignment construction and analysis. Proteins. 1991;9(3):180–190. doi: 10.1002/prot.340090304. [DOI] [PubMed] [Google Scholar]
  45. Shaw W. V., Leslie A. G. Chloramphenicol acetyltransferase. Annu Rev Biophys Biophys Chem. 1991;20:363–386. doi: 10.1146/annurev.bb.20.060191.002051. [DOI] [PubMed] [Google Scholar]
  46. Spencer M. E., Darlison M. G., Stephens P. E., Duckenfield I. K., Guest J. R. Nucleotide sequence of the sucB gene encoding the dihydrolipoamide succinyltransferase of Escherichia coli K12 and homology with the corresponding acetyltransferase. Eur J Biochem. 1984 Jun 1;141(2):361–374. doi: 10.1111/j.1432-1033.1984.tb08200.x. [DOI] [PubMed] [Google Scholar]
  47. Stephens P. E., Darlison M. G., Lewis H. M., Guest J. R. The pyruvate dehydrogenase complex of Escherichia coli K12. Nucleotide sequence encoding the dihydrolipoamide acetyltransferase component. Eur J Biochem. 1983 Jul 1;133(3):481–489. doi: 10.1111/j.1432-1033.1983.tb07490.x. [DOI] [PubMed] [Google Scholar]
  48. Thekkumkara T. J., Ho L., Wexler I. D., Pons G., Liu T. C., Patel M. S. Nucleotide sequence of a cDNA for the dihydrolipoamide acetyltransferase component of human pyruvate dehydrogenase complex. FEBS Lett. 1988 Nov 21;240(1-2):45–48. doi: 10.1016/0014-5793(88)80337-5. [DOI] [PubMed] [Google Scholar]
  49. Tong L. A., Rossmann M. G. The locked rotation function. Acta Crystallogr A. 1990 Oct 1;46(Pt 10):783–792. doi: 10.1107/s0108767390005530. [DOI] [PubMed] [Google Scholar]
  50. Usuda Y., Tujimoto N., Abe C., Asakura Y., Kimura E., Kawahara Y., Kurahashi O., Matsui H. Molecular cloning of the Corynebacterium glutamicum ('Brevibacterium lactofermentum' AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase. Microbiology. 1996 Dec;142(Pt 12):3347–3354. doi: 10.1099/13500872-142-12-3347. [DOI] [PubMed] [Google Scholar]
  51. Wang G. F., Kuriki T., Roy K. L., Kaneda T. The primary structure of branched-chain alpha-oxo acid dehydrogenase from Bacillus subtilis and its similarity to other alpha-oxo acid dehydrogenases. Eur J Biochem. 1993 May 1;213(3):1091–1099. doi: 10.1111/j.1432-1033.1993.tb17858.x. [DOI] [PubMed] [Google Scholar]
  52. Westphal A. H., de Kok A. The 2-oxoglutarate dehydrogenase complex from Azotobacter vinelandii. 2. Molecular cloning and sequence analysis of the gene encoding the succinyltransferase component. Eur J Biochem. 1990 Jan 12;187(1):235–239. doi: 10.1111/j.1432-1033.1990.tb15300.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES