Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jan;9(1):145–157. doi: 10.1110/ps.9.1.145

Apoflavodoxin (un)folding followed at the residue level by NMR.

C P van Mierlo 1, J M van den Oever 1, E Steensma 1
PMCID: PMC2144449  PMID: 10739257

Abstract

The denaturant-induced (un)folding of apoflavodoxin from Azotobacter vinelandii has been followed at the residue level by NMR spectroscopy. NH groups of 21 residues of the protein could be followed in a series of 1H-15N heteronuclear single-quantum coherence spectra recorded at increasing concentrations of guanidinium hydrochloride despite the formation of protein aggregate. These NH groups are distributed throughout the whole apoflavodoxin structure. The midpoints of unfolding determined by NMR coincide with the one obtained by fluorescence emission spectroscopy. Both techniques give rise to unfolding curves with transition zones at significantly lower denaturant concentrations than the one obtained by circular dichroism spectroscopy. The NMR (un)folding data support a mechanism for apoflavodoxin folding in which a relatively stable intermediate is involved. Native apoflavodoxin is shown to cooperatively unfold to a molten globule-like state with extremely broadened NMR resonances. This initial unfolding step is slow on the NMR chemical shift timescale. The subsequent unfolding of the molten globule is faster on the NMR chemical shift timescale and the limited appearance of 1H-15N HSQC cross peaks of unfolded apoflavodoxin in the denaturant range studied indicates that it is noncooperative.

Full Text

The Full Text of this article is available as a PDF (1,023.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barman B. G., Tollin G. Flavine-protein interactions in flavoenzymes. Temperature-jump and stopped-flow studies of flavine analog binding to the apoprotein of Azotobacter flavodoxin. Biochemistry. 1972 Dec 5;11(25):4746–4754. doi: 10.1021/bi00775a018. [DOI] [PubMed] [Google Scholar]
  2. Brenner S. E., Chothia C., Hubbard T. J. Population statistics of protein structures: lessons from structural classifications. Curr Opin Struct Biol. 1997 Jun;7(3):369–376. doi: 10.1016/s0959-440x(97)80054-1. [DOI] [PubMed] [Google Scholar]
  3. Dobson C. M., Karplus M. The fundamentals of protein folding: bringing together theory and experiment. Curr Opin Struct Biol. 1999 Feb;9(1):92–101. doi: 10.1016/s0959-440x(99)80012-8. [DOI] [PubMed] [Google Scholar]
  4. Edmondson D. E., Tollin G. Chemical and physical characterization of the Shethna flavoprotein and apoprotein and kinetics and thermodynamics of flavin analog binding to the apoprotein. Biochemistry. 1971 Jan 5;10(1):124–132. doi: 10.1021/bi00777a019. [DOI] [PubMed] [Google Scholar]
  5. Jackson S. E., Moracci M., elMasry N., Johnson C. M., Fersht A. R. Effect of cavity-creating mutations in the hydrophobic core of chymotrypsin inhibitor 2. Biochemistry. 1993 Oct 26;32(42):11259–11269. doi: 10.1021/bi00093a001. [DOI] [PubMed] [Google Scholar]
  6. Kawahara K., Tanford C. Viscosity and density of aqueous solutions of urea and guanidine hydrochloride. J Biol Chem. 1966 Jul 10;241(13):3228–3232. [PubMed] [Google Scholar]
  7. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  8. Ptitsyn O. B. Molten globule and protein folding. Adv Protein Chem. 1995;47:83–229. doi: 10.1016/s0065-3233(08)60546-x. [DOI] [PubMed] [Google Scholar]
  9. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  10. Schulman B. A., Kim P. S., Dobson C. M., Redfield C. A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nat Struct Biol. 1997 Aug;4(8):630–634. doi: 10.1038/nsb0897-630. [DOI] [PubMed] [Google Scholar]
  11. Steensma E., Heering H. A., Hagen W. R., Van Mierlo C. P. Redox properties of wild-type, Cys69Ala, and Cys69Ser Azotobacter vinelandii flavodoxin II as measured by cyclic voltammetry and EPR spectroscopy,. Eur J Biochem. 1996 Jan 15;235(1-2):167–172. doi: 10.1111/j.1432-1033.1996.00167.x. [DOI] [PubMed] [Google Scholar]
  12. Steensma E., Nijman M. J., Bollen Y. J., de Jager P. A., van den Berg W. A., van Dongen W. M., van Mierlo C. P. Apparent local stability of the secondary structure of Azotobacter vinelandii holoflavodoxin II as probed by hydrogen exchange: implications for redox potential regulation and flavodoxin folding. Protein Sci. 1998 Feb;7(2):306–317. doi: 10.1002/pro.5560070210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Steensma E., van Mierlo C. P. Structural characterisation of apoflavodoxin shows that the location of the stable nucleus differs among proteins with a flavodoxin-like topology. J Mol Biol. 1998 Sep 25;282(3):653–666. doi: 10.1006/jmbi.1998.2045. [DOI] [PubMed] [Google Scholar]
  14. Tanaka M., Haniu M., Yasunobu K. T., Yoch D. C. Complete amino acid sequence of azotoflavin, a flavodoxin from Azotobacter vinelandii. Biochemistry. 1977 Aug 9;16(16):3525–3537. doi: 10.1021/bi00635a005. [DOI] [PubMed] [Google Scholar]
  15. Van Nuland N. A., Meijberg W., Warner J., Forge V., Scheek R. M., Robillard G. T., Dobson C. M. Slow cooperative folding of a small globular protein HPr. Biochemistry. 1998 Jan 13;37(2):622–637. doi: 10.1021/bi9717946. [DOI] [PubMed] [Google Scholar]
  16. Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
  17. van Mierlo C. P., Darby N. J., Creighton T. E. The partially folded conformation of the Cys-30 Cys-51 intermediate in the disulfide folding pathway of bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6775–6779. doi: 10.1073/pnas.89.15.6775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. van Mierlo C. P., Darby N. J., Keeler J., Neuhaus D., Creighton T. E. Partially folded conformation of the (30-51) intermediate in the disulphide folding pathway of bovine pancreatic trypsin inhibitor. 1H and 15N resonance assignments and determination of backbone dynamics from 15N relaxation measurements. J Mol Biol. 1993 Feb 20;229(4):1125–1146. doi: 10.1006/jmbi.1993.1108. [DOI] [PubMed] [Google Scholar]
  19. van Mierlo C. P., Lijnzaad P., Vervoort J., Müller F., Berendsen H. J., de Vlieg J. Tertiary structure of two-electron reduced Megasphaera elsdenii flavodoxin and some implications, as determined by two-dimensional 1H-NMR and restrained molecular dynamics. Eur J Biochem. 1990 Nov 26;194(1):185–198. doi: 10.1111/j.1432-1033.1990.tb19444.x. [DOI] [PubMed] [Google Scholar]
  20. van Mierlo C. P., Vervoort J., Müller F., Bacher A. A two-dimensional 1H NMR study on Megasphaera elsdenii flavodoxin in the reduced state. Sequential assignments. Eur J Biochem. 1990 Feb 14;187(3):521–541. doi: 10.1111/j.1432-1033.1990.tb15334.x. [DOI] [PubMed] [Google Scholar]
  21. van Mierlo C. P., van Dongen W. M., Vergeldt F., van Berkel W. J., Steensma E. The equilibrium unfolding of Azotobacter vinelandii apoflavodoxin II occurs via a relatively stable folding intermediate. Protein Sci. 1998 Nov;7(11):2331–2344. doi: 10.1002/pro.5560071110. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES