Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jan;9(1):158–169. doi: 10.1110/ps.9.1.158

A step toward the prediction of the fluorescence lifetimes of tryptophan residues in proteins based on structural and spectral data.

A Sillen 1, J F Díaz 1, Y Engelborghs 1
PMCID: PMC2144451  PMID: 10739258

Abstract

A method is presented that allows the calculation of the lifetimes of tryptophan residues on the basis of spectral and structural data. It is applied to two different proteins. The calcium binding protein from the sarcoplasm of the muscles of the sand worm Nereis diversicolor (NSCP) changes its conformation upon binding of Ca2+ or Mg2+. NSCP contains three tryptophan residues at position 4, 57, and 170, respectively. The fluorescence lifetimes of W57 are investigated in a mutant in which W4 and W170 have been replaced. The time resolved fluorescence properties of W57 are linked to its different microconformations, which were determined by a molecular dynamics simulation map. Together with the determination of the radiative rate constant from the wavelength of maximum intensity of the decay associated spectra, it was possible to determine an exponential relation between the nonradiative rate constant and the distance between the indole CE3 atom and the carbonyl carbon of the peptide bond reflecting a mechanism of electron transfer as the main determinant of the value for the nonradiative rate constant. This result allows the calculation of the fluorescence lifetimes from the protein structure and the spectra. This method was further tested for the tryptophan of Ha-ras p21 (W32) and for W43 of the Tet repressor, which resulted in acceptable values for the predicted lifetimes.

Full Text

The Full Text of this article is available as a PDF (403.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adari H., Lowy D. R., Willumsen B. M., Der C. J., McCormick F. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. Science. 1988 Apr 22;240(4851):518–521. doi: 10.1126/science.2833817. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Chang A. C., Cohen S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. doi: 10.1128/jb.134.3.1141-1156.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen Y., Barkley M. D. Toward understanding tryptophan fluorescence in proteins. Biochemistry. 1998 Jul 14;37(28):9976–9982. doi: 10.1021/bi980274n. [DOI] [PubMed] [Google Scholar]
  6. Clayton A. H., Sawyer W. H. Tryptophan rotamer distributions in amphipathic peptides at a lipid surface. Biophys J. 1999 Jun;76(6):3235–3242. doi: 10.1016/S0006-3495(99)77475-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collins J. H., Cox J. A., Theibert J. L. Amino acid sequence of a sarcoplasmic calcium-binding protein from the sandworm Nereis diversicolor. J Biol Chem. 1988 Oct 25;263(30):15378–15385. [PubMed] [Google Scholar]
  8. Dekeyzer N., Engelborghs Y., Volckaert G. Cloning, expression and purification of a sarcoplasmic calcium-binding protein from the sandworm Nereis diversicolor via a fusion product with chloramphenicol acetyltransferase. Protein Eng. 1994 Jan;7(1):125–130. doi: 10.1093/protein/7.1.125. [DOI] [PubMed] [Google Scholar]
  9. Desie G., Boens N., De Schryver F. C. Study of the time-resolved tryptophan fluorescence of crystalline alpha-chymotrypsin. Biochemistry. 1986 Dec 16;25(25):8301–8308. doi: 10.1021/bi00373a026. [DOI] [PubMed] [Google Scholar]
  10. Diaz J. F., Wroblowski B., Schlitter J., Engelborghs Y. Calculation of pathways for the conformational transition between the GTP- and GDP-bound states of the Ha-ras-p21 protein: calculations with explicit solvent simulations and comparison with calculations in vacuum. Proteins. 1997 Jul;28(3):434–451. [PubMed] [Google Scholar]
  11. Díaz J. F., Sillen A., Engelborghs Y. Equilibrium and kinetic study of the conformational transition toward the active state of p21Ha-ras, induced by the binding of BeF3- to the GDP-bound state, in the absence of GTPase-activating proteins. J Biol Chem. 1997 Sep 12;272(37):23138–23143. doi: 10.1074/jbc.272.37.23138. [DOI] [PubMed] [Google Scholar]
  12. Gray H. B., Winkler J. R. Electron transfer in proteins. Annu Rev Biochem. 1996;65:537–561. doi: 10.1146/annurev.bi.65.070196.002541. [DOI] [PubMed] [Google Scholar]
  13. Harris D. L., Hudson B. S. Photophysics of tryptophan in bacteriophage T4 lysozymes. Biochemistry. 1990 Jun 5;29(22):5276–5285. doi: 10.1021/bi00474a009. [DOI] [PubMed] [Google Scholar]
  14. Hennecke J., Sillen A., Huber-Wunderlich M., Engelborghs Y., Glockshuber R. Quenching of tryptophan fluorescence by the active-site disulfide bridge in the DsbA protein from Escherichia coli. Biochemistry. 1997 May 27;36(21):6391–6400. doi: 10.1021/bi963017w. [DOI] [PubMed] [Google Scholar]
  15. Levitt M., Lifson S. Refinement of protein conformations using a macromolecular energy minimization procedure. J Mol Biol. 1969 Dec 14;46(2):269–279. doi: 10.1016/0022-2836(69)90421-5. [DOI] [PubMed] [Google Scholar]
  16. Mach H., Middaugh C. R., Lewis R. V. Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal Biochem. 1992 Jan;200(1):74–80. doi: 10.1016/0003-2697(92)90279-g. [DOI] [PubMed] [Google Scholar]
  17. McGregor M. J., Islam S. A., Sternberg M. J. Analysis of the relationship between side-chain conformation and secondary structure in globular proteins. J Mol Biol. 1987 Nov 20;198(2):295–310. doi: 10.1016/0022-2836(87)90314-7. [DOI] [PubMed] [Google Scholar]
  18. Munier H., Gilles A. M., Glaser P., Krin E., Danchin A., Sarfati R., Bârzu O. Isolation and characterization of catalytic and calmodulin-binding domains of Bordetella pertussis adenylate cyclase. Eur J Biochem. 1991 Mar 14;196(2):469–474. doi: 10.1111/j.1432-1033.1991.tb15838.x. [DOI] [PubMed] [Google Scholar]
  19. Pai E. F., Krengel U., Petsko G. A., Goody R. S., Kabsch W., Wittinghofer A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990 Aug;9(8):2351–2359. doi: 10.1002/j.1460-2075.1990.tb07409.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Raleigh E. A., Murray N. E., Revel H., Blumenthal R. M., Westaway D., Reith A. D., Rigby P. W., Elhai J., Hanahan D. McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucleic Acids Res. 1988 Feb 25;16(4):1563–1575. doi: 10.1093/nar/16.4.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rensland H., John J., Linke R., Simon I., Schlichting I., Wittinghofer A., Goody R. S. Substrate and product structural requirements for binding of nucleotides to H-ras p21: the mechanism of discrimination between guanosine and adenosine nucleotides. Biochemistry. 1995 Jan 17;34(2):593–599. doi: 10.1021/bi00002a026. [DOI] [PubMed] [Google Scholar]
  22. Ross J. B., Schmidt C. J., Brand L. Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase. Biochemistry. 1981 Jul 21;20(15):4369–4377. doi: 10.1021/bi00518a021. [DOI] [PubMed] [Google Scholar]
  23. Schlitter J., Engels M., Krüger P. Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J Mol Graph. 1994 Jun;12(2):84–89. doi: 10.1016/0263-7855(94)80072-3. [DOI] [PubMed] [Google Scholar]
  24. Sillen A., Hennecke J., Roethlisberger D., Glockshuber R., Engelborghs Y. Fluorescence quenching in the DsbA protein from Escherichia coli: complete picture of the excited-state energy pathway and evidence for the reshuffling dynamics of the microstates of tryptophan. Proteins. 1999 Nov 1;37(2):253–263. doi: 10.1002/(sici)1097-0134(19991101)37:2<253::aid-prot10>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  25. Silva N. D., Jr, Prendergast F. G. Tryptophan dynamics of the FK506 binding protein: time-resolved fluorescence and simulations. Biophys J. 1996 Mar;70(3):1122–1137. doi: 10.1016/S0006-3495(96)79706-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Silvi Antonini P., Hillen W., Ettner N., Hinrichs W., Fantucci P., Doglia S. M., Bousquet J. A., Chabbert M. Molecular mechanics analysis of Tet repressor TRP-43 fluorescence. Biophys J. 1997 Apr;72(4):1800–1811. doi: 10.1016/S0006-3495(97)78826-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  28. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  29. Tong L. A., de Vos A. M., Milburn M. V., Kim S. H. Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J Mol Biol. 1991 Feb 5;217(3):503–516. doi: 10.1016/0022-2836(91)90753-s. [DOI] [PubMed] [Google Scholar]
  30. Tucker J., Sczakiel G., Feuerstein J., John J., Goody R. S., Wittinghofer A. Expression of p21 proteins in Escherichia coli and stereochemistry of the nucleotide-binding site. EMBO J. 1986 Jun;5(6):1351–1358. doi: 10.1002/j.1460-2075.1986.tb04366.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Valeur B., Weber G. Resolution of the fluorescence excitation spectrum of indole into the 1La and 1Lb excitation bands. Photochem Photobiol. 1977 May;25(5):441–444. doi: 10.1111/j.1751-1097.1977.tb09168.x. [DOI] [PubMed] [Google Scholar]
  32. Vandenbroeck K., Martens E., D'Andrea S., Billiau A. Refolding and single-step purification of porcine interferon-gamma from Escherichia coli inclusion bodies. Conditions for reconstitution of dimeric IFN-gamma. Eur J Biochem. 1993 Jul 15;215(2):481–486. doi: 10.1111/j.1432-1033.1993.tb18057.x. [DOI] [PubMed] [Google Scholar]
  33. Vijay-Kumar S., Cook W. J. Structure of a sarcoplasmic calcium-binding protein from Nereis diversicolor refined at 2.0 A resolution. J Mol Biol. 1992 Mar 20;224(2):413–426. doi: 10.1016/0022-2836(92)91004-9. [DOI] [PubMed] [Google Scholar]
  34. Vos R., Engelborghs Y. A fluorescence study of tryptophan-histidine interactions in the peptide anantin and in solution. Photochem Photobiol. 1994 Jul;60(1):24–32. doi: 10.1111/j.1751-1097.1994.tb03938.x. [DOI] [PubMed] [Google Scholar]
  35. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
  36. Wierzchowski K. L. Intramolecular electron transfer between tryptophan radical and tyrosine in oligoproline-bridged model peptides and hen egg-white lysozyme. Acta Biochim Pol. 1997;44(4):627–644. [PubMed] [Google Scholar]
  37. Willis K. J., Neugebauer W., Sikorska M., Szabo A. G. Probing alpha-helical secondary structure at a specific site in model peptides via restriction of tryptophan side-chain rotamer conformation. Biophys J. 1994 May;66(5):1623–1630. doi: 10.1016/S0006-3495(94)80954-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Willis K. J., Szabo A. G. Conformation of parathyroid hormone: time-resolved fluorescence studies. Biochemistry. 1992 Sep 22;31(37):8924–8931. doi: 10.1021/bi00152a032. [DOI] [PubMed] [Google Scholar]
  39. Wittinghofer A., Pai E. F. The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci. 1991 Oct;16(10):382–387. doi: 10.1016/0968-0004(91)90156-p. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES