Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Oct;9(10):2009–2017. doi: 10.1110/ps.9.10.2009

Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248.

C Derst 1, J Henseling 1, K H Röhm 1
PMCID: PMC2144453  PMID: 11106175

Abstract

The use of Escherichia coli asparaginase II as a drug for the treatment of acute lymphoblastic leukemia is complicated by the significant glutaminase side activity of the enzyme. To develop enzyme forms with reduced glutaminase activity, a number of variants with amino acid replacements in the vicinity of the substrate binding site were constructed and assayed for their kinetic and stability properties. We found that replacements of Asp248 affected glutamine turnover much more strongly than asparagine hydrolysis. In the wild-type enzyme, N248 modulates substrate binding to a neighboring subunit by hydrogen bonding to side chains that directly interact with the substrate. In variant N248A, the loss of transition state stabilization caused by the mutation was 15 kJ mol(-1) for L-glutamine compared to 4 kJ mol(-1) for L-aspartic beta-hydroxamate and 7 kJ mol(-1) for L-asparagine. Smaller differences were seen with other N248 variants. Modeling studies suggested that the selective reduction of glutaminase activity is the result of small conformational changes that affect active-site residues and catalytically relevant water molecules.

Full Text

The Full Text of this article is available as a PDF (482.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aung H. P., Bocola M., Schleper S., Röhm K. H. Dynamics of a mobile loop at the active site of Escherichia coli asparaginase. Biochim Biophys Acta. 2000 Sep 29;1481(2):349–359. doi: 10.1016/s0167-4838(00)00179-5. [DOI] [PubMed] [Google Scholar]
  2. Derst C., Henseling J., Röhm K. H. Probing the role of threonine and serine residues of E. coli asparaginase II by site-specific mutagenesis. Protein Eng. 1992 Dec;5(8):785–789. doi: 10.1093/protein/5.8.785. [DOI] [PubMed] [Google Scholar]
  3. Derst C., Wehner A., Specht V., Röhm K. H. States and functions of tyrosine residues in Escherichia coli asparaginase II. Eur J Biochem. 1994 Sep 1;224(2):533–540. doi: 10.1111/j.1432-1033.1994.00533.x. [DOI] [PubMed] [Google Scholar]
  4. Distasio J. A., Salazar A. M., Nadji M., Durden D. L. Glutaminase-free asparaginase from vibrio succinogenes: an antilymphoma enzyme lacking hepatotoxicity. Int J Cancer. 1982 Sep 15;30(3):343–347. doi: 10.1002/ijc.2910300314. [DOI] [PubMed] [Google Scholar]
  5. Dodson G., Wlodawer A. Catalytic triads and their relatives. Trends Biochem Sci. 1998 Sep;23(9):347–352. doi: 10.1016/s0968-0004(98)01254-7. [DOI] [PubMed] [Google Scholar]
  6. Durden D. L., Distasio J. A. Characterization of the effects of asparaginase from Escherichia coli and a glutaminase-free asparaginase from Vibrio succinogenes on specific ell-mediated cytotoxicity. Int J Cancer. 1981 Jan 15;27(1):59–65. doi: 10.1002/ijc.2910270110. [DOI] [PubMed] [Google Scholar]
  7. Ehrman M., Cedar H., Schwartz J. H. L-asparaginase II of Escherichia coli. Studies on the enzymatic mechanism of action. J Biol Chem. 1971 Jan 10;246(1):88–94. [PubMed] [Google Scholar]
  8. Filpula D., Nagle J. W., Pulford S., Anderson D. M. Sequence of L-asparaginase gene from Erwinia chrysanthemi NCPPB 1125. Nucleic Acids Res. 1988 Nov 11;16(21):10385–10385. doi: 10.1093/nar/16.21.10385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gallagher M. P., Marshall R. D., Wilson R. Asparaginase as a drug for treatment of acute lymphoblastic leukaemia. Essays Biochem. 1989;24:1–40. [PubMed] [Google Scholar]
  10. Harms E., Wehner A., Aung H. P., Röhm K. H. A catalytic role for threonine-12 of E. coli asparaginase II as established by site-directed mutagenesis. FEBS Lett. 1991 Jul 8;285(1):55–58. doi: 10.1016/0014-5793(91)80723-g. [DOI] [PubMed] [Google Scholar]
  11. Harms E., Wehner A., Jennings M. P., Pugh K. J., Beacham I. R., Röhm K. H. Construction of expression systems for Escherichia coli asparaginase II and two-step purification of the recombinant enzyme from periplasmic extracts. Protein Expr Purif. 1991 Apr-Jun;2(2-3):144–150. doi: 10.1016/1046-5928(91)90063-o. [DOI] [PubMed] [Google Scholar]
  12. Herrmann V., Röhm K. H., Schneider F. On the substrate specificity of L-asparaginase from E. coli. FEBS Lett. 1974 Feb 15;39(2):214–217. doi: 10.1016/0014-5793(74)80053-0. [DOI] [PubMed] [Google Scholar]
  13. Hüser A., Klöppner U., Röhm K. H. Cloning, sequence analysis, and expression of ansB from Pseudomonas fluorescens, encoding periplasmic glutaminase/asparaginase. FEMS Microbiol Lett. 1999 Sep 15;178(2):327–335. doi: 10.1111/j.1574-6968.1999.tb08695.x. [DOI] [PubMed] [Google Scholar]
  14. Jennings M. P., Beacham I. R. Analysis of the Escherichia coli gene encoding L-asparaginase II, ansB, and its regulation by cyclic AMP receptor and FNR proteins. J Bacteriol. 1990 Mar;172(3):1491–1498. doi: 10.1128/jb.172.3.1491-1498.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lubkowski J., Palm G. J., Gilliland G. L., Derst C., Röhm K. H., Wlodawer A. Crystal structure and amino acid sequence of Wolinella succinogenes L-asparaginase. Eur J Biochem. 1996 Oct 1;241(1):201–207. doi: 10.1111/j.1432-1033.1996.0201t.x. [DOI] [PubMed] [Google Scholar]
  16. Müller H. J., Boos J. Use of L-asparaginase in childhood ALL. Crit Rev Oncol Hematol. 1998 Aug;28(2):97–113. doi: 10.1016/s1040-8428(98)00015-8. [DOI] [PubMed] [Google Scholar]
  17. Ollenschläger G., Roth E., Linkesch W., Jansen S., Simmel A., Mödder B. Asparaginase-induced derangements of glutamine metabolism: the pathogenetic basis for some drug-related side-effects. Eur J Clin Invest. 1988 Oct;18(5):512–516. doi: 10.1111/j.1365-2362.1988.tb01049.x. [DOI] [PubMed] [Google Scholar]
  18. Ortlund E., Lacount M. W., Lewinski K., Lebioda L. Reactions of Pseudomonas 7A glutaminase-asparaginase with diazo analogues of glutamine and asparagine result in unexpected covalent inhibitions and suggests an unusual catalytic triad Thr-Tyr-Glu. Biochemistry. 2000 Feb 15;39(6):1199–1204. doi: 10.1021/bi991797d. [DOI] [PubMed] [Google Scholar]
  19. Palm G. J., Lubkowski J., Derst C., Schleper S., Röhm K. H., Wlodawer A. A covalently bound catalytic intermediate in Escherichia coli asparaginase: crystal structure of a Thr-89-Val mutant. FEBS Lett. 1996 Jul 22;390(2):211–216. doi: 10.1016/0014-5793(96)00660-6. [DOI] [PubMed] [Google Scholar]
  20. Röhm K. H., Van Etten R. L. The 18O isotope effect in 13C nuclear magnetic resonance spectroscopy: mechanistic studies on asparaginase from Escherichia coli. Arch Biochem Biophys. 1986 Jan;244(1):128–136. doi: 10.1016/0003-9861(86)90101-3. [DOI] [PubMed] [Google Scholar]
  21. Sayers J. R., Schmidt W., Eckstein F. 5'-3' exonucleases in phosphorothioate-based oligonucleotide-directed mutagenesis. Nucleic Acids Res. 1988 Feb 11;16(3):791–802. doi: 10.1093/nar/16.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Swain A. L., Jaskólski M., Housset D., Rao J. K., Wlodawer A. Crystal structure of Escherichia coli L-asparaginase, an enzyme used in cancer therapy. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1474–1478. doi: 10.1073/pnas.90.4.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tanaka S., Robinson E. A., Appella E., Miller M., Ammon H. L., Roberts J., Weber I. T., Wlodawer A. Structures of amidohydrolases. Amino acid sequence of a glutaminase-asparaginase from Acinetobacter glutaminasificans and preliminary crystallographic data for an asparaginase from Erwinia chrysanthemi. J Biol Chem. 1988 Jun 25;263(18):8583–8591. [PubMed] [Google Scholar]
  25. Wehner A., Harms E., Jennings M. P., Beacham I. R., Derst C., Bast P., Röhm K. H. Site-specific mutagenesis of Escherichia coli asparaginase II. None of the three histidine residues is required for catalysis. Eur J Biochem. 1992 Sep 1;208(2):475–480. doi: 10.1111/j.1432-1033.1992.tb17210.x. [DOI] [PubMed] [Google Scholar]
  26. Wriston J. C., Jr, Yellin T. O. L-asparaginase: a review. Adv Enzymol Relat Areas Mol Biol. 1973;39:185–248. doi: 10.1002/9780470122846.ch3. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES